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Factorial ANOVA 
 •  Categorical explanatory variables are called 

factors 
•  More than one at a time 
•  Originally for true experiments, but also useful 

with observational data 

•  If there are observations at all combinations 
of explanatory variable values, it’s called a 
complete factorial design (as opposed to a 
fractional factorial).  



The potato study 

•  Cases are storage containers (of potatoes) 
•  Same number of potatoes in each container. 

Inoculate with bacteria, store for a fixed time 
period. 

•  Response variable is number of rotten 
potatoes. 

•  Two explanatory variables, randomly 
assigned 
–  Bacteria Type (1, 2, 3) 
–  Temperature (1=Cool, 2=Warm) 



Two-factor design 

Bacteria Type 
Temp 1 2 3 

1=Cool 

2=Warm 

Six treatment conditions 



Factorial experiments 
•  Allow more than one factor to be 

investigated in the same study: 
Efficiency! 

•  Allow the scientist to see whether the 
effect of an explanatory variable 
depends on the value of another 
explanatory variable: Interactions 

•  Thank you again, Mr. Fisher. 



   Normal with equal variance 
and conditional (cell) means       

Bacteria Type 
Temp 1 2 3 

1=Cool 

2=Warm 



Tests 

•  Main effects: Differences among 
marginal means 

•  Interactions: Differences between 
differences (What is the effect of Factor 
A? It depends on Factor B.) 



To understand the interaction, 
plot the means 
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Either Way 
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Non-parallel profiles = Interaction 

It Depends
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Main effects for both 
variables, no interaction 

Main Effects Only
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Main effect for Bacteria only 
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Main Effect for Temperature 
Only 

Temperature Only
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Both Main Effects, and the 
Interaction 

Mean Rot as a Function of Temperature 

and Bacteria Type
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Should you interpret the main 
effects? 

It Depends
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Testing for Interactions 

•    

•    

Main Effects Only
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Equivalent statements 

•  The effect of A depends upon B 
•  The effect of B depends on A 



Three factors: A, B and C 

•  There are three (sets of) main effects: One 
each for A, B, C 

•  There are three two-factor interactions 
–  A by B (Averaging over C) 
–  A by C (Averaging over B) 
–  B by C (Averaging over A) 

•  There is one three-factor interaction: AxBxC 

 



Meaning of the 3-factor 
interaction 

•  The form of the A x B interaction 
depends on the value of C 

•  The form of the A x C interaction 
depends on the value of B 

•  The form of the B x C interaction 
depends on the value of A 

•  These statements are equivalent. Use 
the one that is easiest to understand. 



To graph a three-factor 
interaction 

•  Make a separate mean plot (showing a 
2-factor interaction) for each value of 
the third variable. 

•  In the potato study, a graph for each 
type of potato 



Four-factor design 

•  Four sets of main effects 
•  Six two-factor interactions 
•  Four three-factor interactions 
•  One four-factor interaction: The nature 

of the three-factor interaction depends 
on the value of the 4th factor 

•  There is an F test for each one 
•  And so on … 



As the number of factors 
increases 

•  The higher-way interactions get harder and 
harder to understand 

•  All the tests are still tests of differences 
between differences of differences … 

•  But it gets complicated 
•  Effect coding to the rescue 



Effect coding 

Bact B1 B2 

1  1  0 

2  0  1 

3 -1 -1 

Temperature T 
1=Cool  1 

  2=Warm -1 



Interaction effects are 
products of dummy variables 

•  The A x B interaction: Multiply each dummy 
variable for A by each dummy variable for B 

•  Use these products as additional explanatory 
variables in the multiple regression 

•  The A x B x C interaction: Multiply each 
dummy variable for C by each product term 
from the A x B interaction 

•  Test the sets of product terms simultaneously 



Make a table 

Bact Temp B1 B2 T B1T B2T 

1 1  1  0  1  1  0 

1 2  1  0 -1 -1  0 

2 1  0  1  1  0  1 

2 2  0  1 -1  0 -1 

3 1 -1 -1  1 -1 -1 

3 2 -1 -1 -1  1  1 



   Cell and Marginal Means       

Bacteria Type 
Tmp 1 2 3 

1=C 

2=W 



We see 

•  Intercept is the grand mean 
•  Regression coefficients for the dummy 

variables are deviations of the marginal 
means from the grand mean 

•  What about the interactions? 



A bit of algebra shows 



What are “effects?” 

•  There are 3 main effects for Bacteria Type: beta1, beta2 and -beta1 
-beta2. 

•  They are deviations of the marginal means from the grand mean. 
•  There are 2 main effects for Temperature: beta3 and - beta3 
•  They are deviations of the marginal means from the grand mean. 
•  There are 6 interaction effects. 
•  They are deviations of the cell mean from the grand mean plus the 

main effects. 
•  They add to zero across rows and across columns. 
•  The non-redundant ones are beta4 and beta5. 

•  This is regression notation. There are ANOVA notations as well. 



Factorial ANOVA with effect 
coding is pretty automatic 

•  You don’t have to make a table unless asked 
•  It always works as you expect it will 
•  Significance tests are the same as testing 

sets of contrasts 
•  Covariates present no problem. Main effects 

and interactions have their usual meanings, 
“controlling” for the covariates. 

•  Could plot the least squares means 



Again 

•  Intercept is the grand mean 
•  Regression coefficients for the dummy 

variables are deviations of the marginal 
means from the grand mean 

•  Test of main effect(s) is test of the 
dummy variables for a factor.  

•  Interaction effects are products of 
dummy variables. 



Balanced vs. Unbalanced 
Experimental Designs 

•  Balanced design: Cell sample sizes are 
proportional (maybe equal) 

•  Explanatory variables have zero relationship 
to one another 

•  Numerator SS in ANOVA are independent 
•  Everything is nice and simple 
•  Most experimental studies are designed this 

way. 
•  As soon as somebody drops a test tube, it’s 

no longer true 



Analysis of unbalanced data 
•  When explanatory variables are related, there 

is potential ambiguity. 
•  A is related to Y, B is related to Y, and A is 

related to B.  
•  Who gets credit for the portion of variation in 

Y that could be explained by either A or B? 
•  With a regression approach, whether you use 

contrasts or dummy variables (equivalent), 
the answer is nobody. 

•  Think of full, reduced models. 
•  Equivalently, general linear test 



Some software is designed for 
balanced data 

•  The special purpose formulas are much simpler. 
•  Very useful in the past. 
•  Since most data are at least a little unbalanced, a 

recipe for trouble. 
•  Most textbook data are balanced, so they cannot tell 

you what your software is really doing. 
•  R’s anova and aov functions are designed for 

balanced data, though anova applied to lm objects 
can give you what you want if you use it with care. 

•  SAS proc glm is much more convenient. SAS proc 
anova is for balanced data. 



Rotten potatoes with R 

> spuds = read.table("http://www.utstat.toronto.edu/~brunner/312f12

/code_n_data/potato2.data")

> attach(spuds)

> bact = factor(Bact); temp = factor(Temp)

> # Table of means

> meanz = tapply(Rot,INDEX=list(temp,bact),FUN=mean); meanz

1 2 3

1 3.555556 4.777778 8.00000

2 7.000000 13.555556 19.55556



> # Make it prettier

> Labels = NULL # Make an empty list for row, col labels

> Labels$Temp = c("Low","High")

> Labels$Bacteria = c("1","2","3")

> dimnames(meanz) = Labels

> # Could use rownames, colnames instead

> meanz = addmargins(meanz,FUN=mean) # Add marginal means

> meanz = round(meanz,2) # Round to 2 decimal places

> meanz

Bacteria

Temp 1 2 3 mean

Low 3.56 4.78 8.00 5.44

High 7.00 13.56 19.56 13.37

mean 5.28 9.17 13.78 9.41



Two-factor ANOVA 
> # Two-factor ANOVA

> table(temp,bact)

bact

temp 1 2 3

1 9 9 9

2 9 9 9

> # Balanced design. aov is safe

> summary(aov(Rot ~ temp + bact + temp:bact))

Df Sum Sq Mean Sq F value Pr(>F)

temp 1 848.1 848.1 38.614 1.18e-07 ***

bact 2 651.8 325.9 14.839 9.61e-06 ***

temp:bact 2 152.9 76.5 3.481 0.0387 *

Residuals 48 1054.2 22.0

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

# Get same results with Rot ~ temp*bact



One more comment 
about the potatoes 

Note that aov is smart enough to 
produce the right tests even with 
indicator dummy variables. If you 
wanted to reproduce the tests for 
main effects with regression you'd 
use effect coding. 



More about Interactions 
•  Interaction between independent 

variables means “It depends.” 
•  Relationship between one explanatory 

variable and the response variable 
depends on the value of another 
explanatory variable.  

•  Can have 
– Quantitative by quantitative 
– Quantitative by categorical 
– Categorical by categorical 



Quantitative by Quantitative 
 

Y = �0 + �1x1 + �2x2 + �3x1x2 + ⇥

E(Y |x) = �0 + �1x1 + �2x2 + �3x1x2

For fixed x2 

E(Y |x) = (�0 + �2x2) + (�1 + �3x2)x1

Both slope and intercept depend on value of x2 

And for fixed x1, slope and intercept relating x2 to E(Y) depend  
on the value of x1 



Quantitative by Categorical 

•  Interaction means slopes are not equal 
•  Form a product of quantitative variable by 

each dummy variable for the categorical 
variable 

•  For example, three treatments and one 
covariate: x1 is the covariate and x2, x3 are 
dummy variables 

Y = �0 + �1x1 + �2x2 + �3x3

+�4x1x2 + �5x1x3 + ⇥



E(Y |x) = �0 + �1x1 + �2x2 + �3x3 + �4x1x2 + �5x1x3

Group x2 x3 E(Y |x)
1 1 0 (�0 + �2) + (�1 + �4)x1

2 0 1 (�0 + �3) + (�1 + �5)x1

3 0 0 �0 + �1 x1



Group x2 x3 E(Y |x)
1 1 0 (�0 + �2) + (�1 + �4)x1

2 0 1 (�0 + �3) + (�1 + �5)x1

3 0 0 �0 + �1 x1

What null hypothesis would you test for 

•  Equal slopes 
•  Compare slopes for group one vs three 
•  Compare slopes for group one vs two 
•  Equal regressions 
•  Interaction between group and x1 



What to do if H0: β4=β5=0 is rejected 

•  How do you test Group “controlling” for x1? 
•  A good choice is to set x1 to its sample mean, 

and compare treatments at that point. 

•  How about setting x1 to sample mean of the group (3 different 
values)? 

•  With random assignment to Group, all three means just estimate 
E(X1), and the mean of all the x1 values is a better estimate. 



Copyright Information 
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