Contingency TablesPart Two ${ }^{1}$

STA 312: Fall 2012

${ }^{1}$ See last slide for copyright information.

Suggested Reading: Chapter 2

- Read Section 2.6 about Fisher's exact test
- Read Section 2.7 about multi-dimensional tables and Simpson's paradox.

Overview

(1) Testing for the Product Multinomial
(2) Fisher's Exact Test
(3) Tables of Higher Dimension

Testing Association for the Product Multinomial Prospective and retrospective designs

Prospective design:

- A conditional multinomial in each row
- I independent random samples, one for each value of X
- Likelihood is a product of I multinomials
- Null hypothesis is that all I sets of conditional probabilities are the same.

A retrospective design is just like this, but with rows and columns reversed.

Null hypothesis is no differences among the I vectors of conditional probabilities

	Attack	Stroke	Both	Neither	Total
Drug					n_{1+}
Drug and Exercise					n_{2+}
Total	n_{+1}	n_{+2}	n_{+3}	n_{+4}	n

- Both n_{1+} and n_{2+} are fixed by the design. They are sample sizes.
- Under H_{0}, MLE of the (common) conditional probability is the marginal sample proportion:

$$
\widehat{\pi}_{i j}=p_{+j}=\frac{n_{+j}}{n}
$$

- And the expected cell frequency is just

$$
\widehat{\mu}_{i j}=n_{i+} \widehat{\pi}_{i j}=n_{i+} \frac{n_{+j}}{n}=\frac{n_{i+} n_{+j}}{n}
$$

Expected frequencies are the same!

For testing both independence and testing equal conditional probabilities,

$$
\widehat{\mu}_{i j}=\frac{n_{i+} n_{+j}}{n} .
$$

The degrees of freedom are the same too. For the product multinomial,

- There are $I(J-1)$ free parameters in the unconstrained model.
- There are $J-1$ free parameters under the null hypothesis.
- H_{0} imposes $I(J-1)-(J-1)=(I-1)(J-1)$ constraints on the parameter vector.
- So $d f=(I-1)(J-1)$.

	Attack	Stroke	Both	Neither	Total
Drug					n_{1+}
Drug and Exercise					n_{2+}
Total	$n+1$	$n+2$	$n+3$	$n+4$	n

This is very fortunate

- The cross-sectional, prospective and retrospectives are different from one another conceptually.
- The multinomial and product-multinomial models are different from one another technically.
- But the tests for relationship between explanatory and response variables are 100% the same.
- Same expected frequencies and same degrees of freedom.
- Therefore we get the same test statistics and p-values.

Fisher's Exact Test

- Everything so far is based on large-sample theory.
- What if the sample is small?
- Fisher's exact test is good for 2×2 tables.
- There are extensions for larger tables.

Fisher's exact test is a permutation test

	Y			
1	1			
X	1	x	$a-x$	a
	2	$b-x$	$n-a-b+x$	$n-a$
		b	$n-b$	n

- Think of a data file with 2 columns, X and Y, filled with ones and twos.
- X has a ones and Y has b ones.
- Calculate the estimated odds ratio $\widehat{\theta}$.
- If X and Y are unrelated, all possible pairings of X and Y values should be equally likely.
- There are n ! ways to order the X values, and for each of these, n ! ways to order the Y values.

Idea of a permutation test

X	Y			
	2	1	2	
		x	$a-x$	a
		$b-x$	$n-a-b+x$	$n-a$
		b	$n-b$	n

- There are $(n!)^{2}$ ways to arrange the X and Y values.
- For what fraction of these is the (estimated) odds ratio
- Greater than or equal to $\widehat{\theta}$ (Upper tail p-value)
- Less than or equal to $\widehat{\theta}$ (Lower tail p-value)

For a 2 -sided test, add the probabilities of all the tables less likely than or equally likely to the one we have observed. (This is what R does.)

Nice idea, but hard to compute. Fisher thought of it and simplified it.

Let us count together

X	Y			
	2	1	2	
		x	$a-x$	a
		$b-x$	$n-a-b+x$	$n-a$
		b	$n-b$	n

- The n ! permutations of 1 s and 2 s have lots of repeats that look the same.
- There are $\binom{n}{a}$ ways to choose which cases have $X=1$.
- For each of these, there are $\binom{n}{b}$ ways to choose which cases have $Y=1$.
- So the total number of 2×2 tables with n observations, $n_{1+}=a$ and $n_{+1}=b$ is $\binom{n}{a}\binom{n}{b}$.
- Of these, the number of ways to get the values in the table is just the multinomial coefficient
$\left(\begin{array}{cc} & n \\ x & a-x\end{array} \quad b-x \quad n-a-b+x\right)=\frac{n!}{x!(a-x)!(b-x)!(n-a-b+x)!}$.

Hypergeometric probability

X

Y
1
:---:
$b-x$
$b=n+1$

Dividing the number of ways to get $n_{11}=x$ by the total number of equally likely outcomes,

$$
\begin{aligned}
& P\left(n_{11}=x\right)=\frac{\left(\begin{array}{cc}
x & a-x \\
x-x & n-a-b+x
\end{array}\right)}{\binom{n}{a}\binom{n}{b}} \\
& =\frac{\frac{n!}{\overline{x!(a-x)!(b-x)!(n-a-b+x)!}} n}{\frac{n!}{a!(n-a)!} \frac{n!(n-b)!}{b / n}} \\
& =\frac{\binom{a}{x}\binom{n-a}{b-x}}{\binom{n}{b}} \\
& =\frac{\binom{n_{1+}}{n_{11}}\binom{n_{2+}}{n_{+1}-n_{11}}}{\binom{n}{n_{+1}}} \\
& \text { (Eq. 2.11, p. 46) }
\end{aligned}
$$

Adding up the probabilities

Always remembering that a, b and n are fixed

	12	Y		a
X		1	2	
		x	$a-x$	
		$b-x$	$n-a-b+x$	$n-a$
		b	$n-b$	n

- Fortunately, $\theta(x)$ is an increasing function of x (differentiate).
- So, tables with larger x values than the one observed also have greater sample odds ratios. Add $P\left(n_{11}=x\right)$ over x to get tail probabilities.
- Range of x :
- $x \leq \min (a, b)$
- $n_{22}=n-a-b+x \geq 0$, so $x \geq a+b-n$.
- Thus, x ranges from $\max (0, a+b-n)$ to $\min (a, b)$.

Example: Sinking of the the Titanic

```
> # help(Titanic)
> dimnames(Titanic)
```


\$Class

```
[1] "1st" "2nd" "3rd" "Crew"
```

\$Sex
[1] "Male" "Female"
\$Age
[1] "Child" "Adult"
\$Survived
[1] "No" "Yes"
> \# Women in 1st class vs Women in crew
> ladies $=$ Titanic $[c(1,4), 2,2$,

Just the ladies

> ladies
Survived

Class No Yes
1st 4140
Crew 320
> 140/144 \# Rich ladies
[1] 0.9722222
> 20/23 \# Cleaning ladies
[1] 0.8695652
> X2 = chisq.test(ladies, correct=F); X2
Warning message:
In chisq.test(ladies, correct = F) :
Chi-squared approximation may be incorrect

Pearson's Chi-squared test
data: ladies
X-squared $=5.2043$, df $=1, \mathrm{p}$-value $=0.02253$

Check the expected frequencies

```
> X2$expected
    Survived
Class N
No Yes
    1st 6.0359281 137.96407
    Crew 0.9640719 22.03593
> fisher.test(ladies)
Fisher's Exact Test for Count Data
data: ladies
p-value = 0.05547
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
    0.03027561 1.41705937
sample estimates:
odds ratio
    0.1935113
```


Conclusion

Though a higher percentage of women in first class survived than female crew, it could have been due to chance.

Fisher's exact test makes sense even without the pretending we have a random sample

You could say

- Assume that status on the ship for these women (First Class passenger vs. crew) is fixed. It was what it was.
- Survival also was what it was.
- Given this, is the observed pairing of status and survival an unusual one?
- That is, for what fraction of the possible pairings is the status difference in survival as great or greater than the one we have observed?
- A little over 5% ? That's a bit unusual, but perhaps not very unusual.
- There is not even any need to talk about probability.

Tables of Higher Dimension: Conditional independence

- Suppose X and Y are related.
- Are X and Y related conditionally on the value of W ?
- One sub-table for each value of W.
- X and Y can easily be related unconditionally, but still be conditionally independent.
- Example: Among adults 18 and older, $X=$ Tattoos and $Y=$ Grey hair.
- Need a 3-way table, showing the relationship of tattoos and grey hair separately for each age group.
- Speak of the relationship between X and Y "controlling for" W, or "allowing for" W.

Was UC Berkeley discriminating against women?

Data from the 1970s

Data in a 3-dimensional array: Variables are

- Sex of the person applying for graduate study
- Department to which the person applied
- Whether or not the person was admitted

Berkeley data

> \#
> \# More than one Explanatory Variable at once \#
> \# data() to list the nice data sets that come with R \#
> $\#$ help(UCBAdmissions) \#
> \#
$>\operatorname{dim}(U C B A d m i s s i o n s)$
[1] 226
> dimnames (UCBAdmissions)
\$Admit
[1] "Admitted" "Rejected"
\$Gender
[1] "Male" "Female"
\$Dept
[1] "A" "B" "C" "D" "E" "F"
> \# Look at gender by admit.
> \# Apply sum to rows and columns, obtaining the marginal freqs.
$>$ sexadmit $=$ apply(UCBAdmissions, $c(1,2)$, sum)

Sex by Admission

```
> sexadmit
```

```
            Gender
Admit Male Female
    Admitted 1198 557
    Rejected 1493 1278
> sexadmit = t(sexadmit); sexadmit
            Admit
Gender Admitted Rejected
    Male 1198 1493
    Female 557 1278
> rowmarg = apply(sexadmit,1,sum); rowmarg
    Male Female
    2691 1835
> percentadmit = 100 * sexadmit[,1]/rowmarg ; percentadmit
    Male Female
44.51877 30.35422
It certainly looks suspicious.
```


Test sex by admission

> chisq.test(sexadmit, correct=F)

Pearson's Chi-squared test
data: sexadmit
X-squared $=92.2053, \mathrm{df}=1, \mathrm{p}$-value $<2.2 \mathrm{e}-16$
> fisher.test(sexadmit) \# Gives same p-value

Fisher's Exact Test for Count Data
data: sexadmit
p-value < $2.2 e-16$
alternative hypothesis: true odds ratio is not equal to 1 95 percent confidence interval:
1.6213562 .091246
sample estimates:
odds ratio
1.840856

But look at the whole table

> UCBAdmissions
, , Dept = A

Gender
Admit Male Female
Admitted 51289
Rejected 31319
, , Dept = B

Gender
Admit Male Female
Admitted 35317
Rejected 207 8

Berkeley table continued

, , Dept = C

Gender
Admit Male Female
Admitted 120202
Rejected 205391
, , Dept = D

Gender		
Admit	Male	Female
Admitted	138	131
Rejected	279	244

Berkeley table continued some more

, , Dept = E

Gender		
Admit	Male	Female
Admitted	53	94
Rejected	138	299

, , Dept = F

Gender		
Admit	Male	Female
Admitted	22	24
Rejected	351	317

Look at Department A

> \# Just Department A
> JustA = t(UCBAdmissions[,,1]); JustA Admit
Gender Admitted Rejected
Male 512313
Female 8919
> JustA[1,1]/sum(JustA[1,]) \# Men
[1] 0.6206061
> JustA[2,1]/sum(JustA[2,]) \# Women
[1] 0.8240741
> chisq.test (UCBAdmissions[, ,1], correct=F)

Pearson's Chi-squared test
data: UCBAdmissions[, , 1]
X-squared $=17.248, \mathrm{df}=1, \mathrm{p}$-value $=3.28 \mathrm{e}-05$
Women are more likely to be admitted.

Summarize analyses of sub-tables Just the code, for reference

\# Summarize analyses of sub-tables: Loop over departments
\# Sum of chi-squared values in X2
ndepts $=$ dim(UCBAdmissions) [3]
gradschool=NULL; X2=0
for (j in 1:ndepts)
\{
dept $=$ dimnames(UCBAdmissions)\$Dept[j] \# A B C etc.
tabl $=t$ (UCBAdmissions[, j$]$) \# All rows, all cols, level j
Rowmarg = apply(tabl,1,sum)
Percentadmit $=$ round (100*tabl[,1]/Rowmarg ,1)
per $=$ round (Percentadmit, 2)
Test = chisq.test(tabl, correct=F)
tstat $=$ round(Test\$statistic,2); pval = round(Test\$p.value,5)
gradschool $=$ rbind(gradschool, $c(d e p t, P e r c e n t a d m i t, t s t a t, p v a l))$
X2 = X2+Test\$statistic
\} \# Next Department
colnames(gradschool) = c("Dept", "\%MaleAcc","\%FemAcc","Chisq", "p-value") noquote(gradschool) \# Print character strings without quote marks

Simpson's paradox

> noquote(gradschool) \# Print character strings without que

	Dept	\%MaleAcc	\%FemAcc	Chisq	p-value
$[1]$,	A	62.1	82.4	17.25	$3 \mathrm{e}-05$
$[2]$,	B	63	68	0.25	0.61447
$[3]$,	C	36.9	34.1	0.75	0.38536
$[4]$,	D	33.1	34.9	0.3	0.58515
$[5]$,	E	27.7	23.9	1	0.31705
$[6]$,	F	5.9	7	0.38	0.53542

Overall test of conditional independence

Add the chi-squared values and add the degrees of freedom.
> \# Overall test of conditional independence
$>$ names $(X 2)=$ "Pooled Chi-square"
$>d f=n d e p t s$; names $(d f)=" d f "$
> pval=1-pchisq(X2,df)
> names (pval) = "P-value"
> print (c (X2,df,pval))

Pooled Chi-square	df	P-value
19.938413378	6.000000000	0.002840164

Conclusion: Gender and admission are not conditionally independent. From the preceding slide, we see it comes from Department A 's being more likely to admit women than men.

Track it down

Make a table showing Department, Number of applicants, Percent female applicants and Percent of applicants admitted.

```
> # What's happening?
> whoapplies = NULL
> for(j in 1:ndepts)
+ {
+ dept = dimnames(UCBAdmissions)$Dept[j]; names(dept) = "Dept"
+ tabl = t(UCBAdmissions[,,j]) # All rows, all cols, level j
+ nj = sum(tabl); names(nj)=" n "
+ mf = apply(tabl,1,sum); femapp = round(100*mf[2]/nj,2)
+ succ = apply(tabl,2,sum); getin = round(100*succ[1]/nj,2)
+ whoapplies = rbind(whoapplies,c(dept,nj,femapp,getin))
+ } # Next Department
```

>

Now it's in a table called whoapplies.

The explanation

> noquote(whoapplies)

	Dept	n	Female	Admitted
[1,]	A	933	11.58	64.42
[2,]	B	585	4.27	63.25
[3,]	C	918	64.6	35.08
[4,]	D	792	47.35	33.96
[5,]	E	584	67.29	25.17
[6,]	F	714	47.76	6.44

Departments with a higher acceptance rate have a higher percentage of male applicants.

Does this mean that the University of California at Berkeley was not discriminating against women?

- By no means. Why does a department admit very few applicants relative to the number who apply?
- Because they do not have enough professors and other resources to offer more classes.
- This implies that the departments popular with men were getting more resources, relative to the level of interest measured by number of applicants.
- Why? Maybe because men were running the show.
- The "show," definitely includes the U. S. military, which funds a lot of engineering and similar stuff at big American universities.

Some uncomfortable truths

- Especially for non-experimental studies, statistical analyses involving just one explanatory variable at a time can be very misleading.
- When you include a new variable in an analysis, the results could get weaker, they could get stronger, or they could reverse direction - all depending upon the inter-relations of the explanatory variables and the response variable.
- Failing to include important explanatory variables in observational studies is a common source of bias.
- Ask: "Did you control for ..."

At least it's a start

- We have seen one way to "control" for potentially misleading variables (sometimes called "confounding variables").
- It's control by sub-division, in which you examine the relationship in question separately for each value of a control variable or variables.
- We have a good way of pooling the tests within each level of the control variable, to obtain a test of conditional independence.
- There's also model-based control, which is coming next.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/312f12

