Contingency Tables Part One ${ }^{1}$

STA 312: Fall 2012
${ }^{1}$ See last slide for copyright information.

Suggested Reading: Chapter 2

- Read Sections 2.1-2.4
- You are not responsible for Section 2.5

Overview

(1) Definitions
(2) Study Designs and Models
(3) Odds ratio

4 Testing Independence

We are interested in relationships between variables

A contingency table is a joint frequency distribution.

	No Pneumonia	Pneumonia
No Vitamin C		
500 mg. or more Daily		

A contingency table

- Counts the number of cases in combinations of two (or more) categorical variables
- In general, X has I categories and Y has J categories
- Often, X is the explanatory variable and Y is the response variable (like regression).

Cell probabilities $\pi_{i j}$

$i=1, \ldots, I$ and $j=1, \ldots, J$

Passed the Course

Course	Did not pass	Passed	Total
Catch-up	π_{11}	π_{12}	π_{1+}
Mainstream	π_{21}	π_{22}	π_{2+}
Elite	π_{31}	π_{32}	π_{3+}
Total	π_{+1}	π_{+2}	1

Marginal probabilities

- $\operatorname{Pr}\{X=i\}=\sum_{j=1}^{J} \pi_{i j}=\pi_{i+}$
- $\operatorname{Pr}\{Y=j\}=\sum_{i=1}^{I} \pi_{i j}=\pi_{+j}$

Conditional probabilities

$$
\operatorname{Pr}\{Y=j \mid X=i\}=\frac{\operatorname{Pr}\{Y=j \cap X=i\}}{\operatorname{Pr}\{X=i\}}=\frac{\pi_{i j}}{\pi_{i+}}
$$

Passed the Course

Course	Did not pass	Passed	Total
Catch-up	π_{11}	π_{12}	π_{1+}
Mainstream	π_{21}	π_{22}	π_{2+}
Elite	π_{31}	π_{32}	π_{3+}
Total	π_{+1}	π_{+2}	1

- Usually, interest is in the conditional distribution of the response variable given the explanatory variable.
- Sometimes, we make tables of conditional probabilities

Cell frequencies

Passed the Course

Course	Did not pass	Passed	Total
Catch-up	n_{11}	n_{12}	n_{1+}
Mainstream	n_{21}	n_{22}	n_{2+}
Elite	n_{31}	n_{32}	n_{3+}
Total	n_{+1}	n_{+2}	n

For example

Passed the Course

Course	Did not pass	Passed	Total
Catch-up	27	8	35
Mainstream	124	204	328
Elite	7	24	31
Total	158	236	394

Estimating probabilities

Should we just estimate $\pi_{i j}$ with $p_{i j}=\frac{n_{i j}}{n}$?

- Sometimes.
- It depends on the study design.
- The study design determines exactly what is in the tables

Study designs

- Cross-sectional
- Prospective
- Retrospective

Cross-sectional design

- Both variables in the table are measured with
- No assignment of cases to experimental conditions
- No selection of cases based on variable values
- For example, a sample of n first-year university students sign up for one of three calculus courses, and each student either passes the course or does not.
- Total sample size n is fixed by the design.
- Multinomial model, with $c=I J$ categories.
- Estimate $\pi_{i j}$ with $p_{i j}$
- Estimating conditional probabilities is easy.

Prospective design

- Prospective means "looking forward" (from explanatory to response).
- Groups that define the explanatory variable categories are formed before the response variable is observed.
- Experimental studies with random assignment are prospective (clinical trials).
- Cohort studies that follow patients who got different types of surgery.
- Stratified sampling, like interview 200 people from each province.
- Marginal totals of the explanatory variable are fixed by the design.
- Assume random sampling within each category defined by the explanatory variable, and independence between categories.
- Product multinomial model: A product of I multinomial likelihoods.
- Good for estimating conditional probability of response given a value of the explanatory variable.

Product multinomial

- Take independent random samples of sizes n_{1+}, \ldots, n_{I+} from I sub-populations.
- In each, observe a multinomial with J categories. Compare.
- Example: Sample 100 entring students from each of three campuses. At the end of first year, observe whether they are in good standing, on probation, or have left the university.
- The $\pi_{i j}$ are now conditional probabilities: $\pi_{1+}=1$
- Write the likelihood as

$$
\left.\prod_{i=1}^{3}\left[\pi_{i 1}^{n_{i 1}} \pi_{i 2}^{n_{i 2}}\left(1-\pi_{i 1}-\pi_{i 2}\right)^{n_{i 3}}\right)\right]
$$

Retrospective design

- Retrospective means "looking backward" (from response to explanatory).
- In a case control study, a sample of patients with a disease is compared to a sample without the disease, to discover variables that might have caused the disease.
- Vitamin C and Pneumonia (fairly rare, even in the elderly)
- Marginal totals for the response variable are fixed by the design.
- Product multinomial again
- Natural for estimating conditional probability of explanatory variable given response variable.
- Usually that's not what you want.
- But if you know the probability of having the disease, you can use Bayes' Theorem to estimate the conditional probabilities in the more interesting direction.

Meanings of X and Y "unrelated"

- Conditional distribution of $Y \mid X=x$ is the same for every x
- Conditional distribution of $X \mid Y=y$ is the same for every y
- X and Y are independent (if both are random)

If variables are not unrelated, call them "related."

Put probabilities in table cells

	$Y=1$	$Y=2$	Total
$X=1$	π_{11}	π_{12}	$\pi_{11}+\pi_{12}$
$X=2$	π_{21}	π_{22}	$\pi_{21}+\pi_{22}$
Total	$\pi_{11}+\pi_{21}$	$\pi_{12}+\pi_{22}$	

$$
\operatorname{Pr}\{Y=1 \mid X=1\}=\frac{\pi_{11}}{\pi_{11}+\pi_{12}}
$$

Conditional distribution of Y given $X=x$

Same for all values of x

	$Y=1$	$Y=2$	Total
$X=1$	π_{11}	π_{12}	$\pi_{11}+\pi_{12}$
$X=2$	π_{21}	π_{22}	$\pi_{21}+\pi_{22}$
Total	$\pi_{11}+\pi_{21}$	$\pi_{12}+\pi_{22}$	

$$
\operatorname{Pr}\{Y=1 \mid X=1\}=\operatorname{Pr}\{Y=1 \mid X=2\}
$$

$$
\Leftrightarrow \quad \frac{\pi_{11}}{\pi_{11}+\pi_{12}}=\frac{\pi_{21}}{\pi_{21}+\pi_{22}}
$$

$$
\Leftrightarrow \quad \pi_{11}\left(\pi_{21}+\pi_{22}\right)=\pi_{21}\left(\pi_{11}+\pi_{12}\right)
$$

$$
\Leftrightarrow \quad \pi_{11} \pi_{21}+\pi_{11} \pi_{22}=\pi_{11} \pi_{21}+\pi_{12} \pi_{21}
$$

$$
\Leftrightarrow \quad \pi_{11} \pi_{22}=\pi_{12} \pi_{21}
$$

$$
\Leftrightarrow \frac{\pi_{11} \pi_{22}}{\pi_{12} \pi_{21}}=\theta=1
$$

Cross product ratio

	$Y=1$	$Y=2$	Total
$X=1$	π_{11}	π_{12}	$\pi_{11}+\pi_{12}$
$X=2$	π_{21}	π_{22}	$\pi_{21}+\pi_{22}$
Total	$\pi_{11}+\pi_{21}$	$\pi_{12}+\pi_{22}$	

$$
\theta=\frac{\pi_{11} \pi_{22}}{\pi_{12} \pi_{21}}
$$

Conditional distribution of X given $Y=y$

Same for all values of y

	$Y=1$	$Y=2$	Total
$X=1$	π_{11}	π_{12}	$\pi_{11}+\pi_{12}$
$X=2$	π_{21}	π_{22}	$\pi_{21}+\pi_{22}$
Total	$\pi_{11}+\pi_{21}$	$\pi_{12}+\pi_{22}$	

$$
\operatorname{Pr}\{X=1 \mid Y=1\}=\operatorname{Pr}\{X=1 \mid Y=2\}
$$

$$
\begin{aligned}
& \Leftrightarrow \quad \frac{\pi_{11}}{\pi_{11}+\pi_{21}}=\frac{\pi_{12}}{\pi_{12}+\pi_{22}} \\
& \Leftrightarrow \quad \pi_{11}\left(\pi_{12}+\pi_{22}\right)=\pi_{12}\left(\pi_{11}+\pi_{21}\right) \\
& \Leftrightarrow \quad \pi_{11} \pi_{12}+\pi_{11} \pi_{22}=\pi_{11} \pi_{12}+\pi_{12} \pi_{21} \\
& \Leftrightarrow \quad \pi_{11} \pi_{22}=\pi_{12} \pi_{21}
\end{aligned}
$$

$$
\Leftrightarrow \frac{\pi_{11} \pi_{22}}{\pi_{12} \pi_{21}}=\theta=1
$$

X and Y independent

Meaningful in a cross-sectional design

Write the probability table as

$\boldsymbol{\pi}=$| x | $a-x$ | a |
| :---: | :---: | :---: |
| $b-x$ | $1-a-b+x$ | $1-a$ |
| b | $1-b$ | 1 |

Independence means $P(X=x, Y=y)=P(X=x) P(Y=y)$. If $x=a b$ then

$\boldsymbol{\pi}=$| $a b$ | $a(1-b)$ | a |
| :---: | :---: | :---: |
| $b(1-a)$ | $(1-a)(1-b)$ | $1-a$ |
| b | $1-b$ | 1 |

And the cross-product ratio $\theta=1$.

Conversely

x	$a-x$	a
$b-x$	$1-a-b+x$	$1-a$
b	$1-b$	1

If $\theta=1$, then

$$
\begin{aligned}
& x(1-a-b+x)=(a-x)(b-x) \\
\Leftrightarrow & x-a x-b x-x^{2}=a b-a x-b x-x^{2} \\
\Leftrightarrow & x=a b
\end{aligned}
$$

Meaning X and Y are independent.

What we have learned about the cross-product ratio θ

- In a 2×2 table, $\theta=1$ if and only if the variables are unrelated, no matter how "unrelated" is expressed.
- Conditional distribution of $Y \mid X=x$ is the same for every x
- Conditional distribution of $X \mid Y=y$ is the same for every y
- X and Y are independent (if both are random)
- It's meaningful for all three study designs: Prospective, Retrospective and Cross-sectional.

Investigate θ a bit more.

Odds

Denoting the probability of an event by π,

$$
\text { Odds }=\frac{\pi}{1-\pi}
$$

- Implicitly, we are saying the odds are $\frac{\pi}{1-\pi}$ "to one."
- if the probability of the event is $\pi=2 / 3$, then the odds are $\frac{2 / 3}{1 / 3}=2$, or two to one.
- Instead of saying the odds are 5 to 2 , we'd say 2.5 to one.
- Instead of saying 1 to four, we'd say 0.25 to one.
- The higher the probability, the greater the odds.
- And as the probability of an event approaches one, the denominator of the odds approaches zero.
- This means the odds can be any non-negative number.

Odds ratio

- Conditional Odds is an idea that makes sense.
- Just use a conditional probability to calculate the odds.
- Consider the ratio of the odds of $Y=1$ given $X=1$ to the odds of $Y=1$ given $X=2$.
- Could say something like "The odds of cancer are 3.2 times as great for smokers."
$\frac{\operatorname{Odds}(Y=1 \mid X=1)}{\operatorname{Odds}(Y=1 \mid X=2)}=\frac{P(Y=1 \mid X=1)}{P(Y=2 \mid X=1)} / \frac{P(Y=1 \mid X=2)}{P(Y=2 \mid X=2)}$

Simplify the odds ratio

	$Y=1$	$Y=2$	Total
$X=1$	π_{11}	π_{12}	π_{1+}
$X=2$	π_{21}	π_{22}	π_{2+}
Total	π_{+1}	π_{+2}	1

$$
\begin{aligned}
\frac{\operatorname{Odds}(Y=1 \mid X=1)}{\operatorname{Odds}(Y=1 \mid X=2)} & =\frac{P(Y=1 \mid X=1)}{P(Y=2 \mid X=1)} / \frac{P(Y=1 \mid X=2)}{P(Y=2 \mid X=2)} \\
& =\frac{\pi_{11} / \pi_{1+}}{\pi_{12} / \pi_{1+}} / \frac{\pi_{21} / \pi_{2+}}{\pi_{22} / \pi_{2+}} \\
& =\frac{\pi_{11} \pi_{22}}{\pi_{12} \pi_{21}} \\
& =\theta
\end{aligned}
$$

So the cross-product ratio is actually the odds ratio.

The cross-product ratio is the odds ratio

- When $\theta=1$,
- The odds of $Y=1$ given $X=1$ equal the odds of $Y=1$ given $X=2$.
- This happens if and only if X and Y are unrelated.
- Applies to all 3 study designs.
- If $\theta>1$, the odds of $Y=1$ given $X=1$ are greater than the odds of $Y=1$ given $X=2$.
- If $\theta<1$, the odds of $Y=1$ given $X=1$ are less than the odds of $Y=1$ given $X=2$.

Odds ratio applies to larger tables

	Admitted	Not Admitted
Dept. A	601	332
Dept. B	370	215
Dept. C	322	596
Dept. D	269	523
Dept. E	147	437
Dept. F	46	668

The (estimated) odds of being accepted are

$$
\widehat{\theta}=\frac{(601)(668)}{(332)(46)}=26.3
$$

times as great in Department A, compared to Department F.

Some things to notice About the odds ratio

- The cross-product (odds) ratio is meaningful for large tables; apply it to 2×2 sub-tables.
- Re-arrange rows and columns as desired to get the cell you want in the upper left position.
- Combining rows or columns (especially columns) by adding the frequencies is natural and valid.
- If you hear something like "Chances of death before age 50 are four times as great for smokers," most likely they are talking about an odds ratio.

Testing independence with large samples

Passed the Course

Course	Did not pass	Passed	Total
Catch-up	π_{11}	π_{12}	π_{1+}
Mainstream	π_{21}	π_{22}	π_{2+}
Elite	π_{31}	π_{32}	$1-\pi_{1+}-\pi_{2+}$
Total	π_{+1}	$1-\pi_{+1}$	1

Under $H_{0}: \pi_{i j}=\pi_{i+} \pi_{+j}$

- There are $(I-1)+(J-1)$ free parameters: The marginal probabilities.
- MLEs of marginal probabilities are $\widehat{\pi}_{i+}=p_{i+}$ and $\widehat{\pi}_{+j}=p_{+j}$
- Restricted MLEs are $\widehat{\pi}_{i j}=p_{i+} p_{+j}$
- The null hypothesis reduces the number of free parameters in the model by $(I J-1)-(I-1+J-1)=(I-1)(J-1)$
- So the test has $(I-1)(J-1)$ degrees of freedom.

Estimated expected frequencies

Under the null hypothesis of independence

$$
\begin{aligned}
\widehat{\mu}_{i j} & =n \widehat{\pi}_{i j} \\
& =n \widehat{\pi}_{i+} \widehat{\pi}_{+j} \\
& =n p_{i+} p_{+j} \\
& =n \frac{n_{i+}}{n} \frac{n_{+j}}{n} \\
& =\frac{n_{i+} n_{+j}}{n}
\end{aligned}
$$

$($ Row total $) \times($ Column total $) \div($ Total total $)$

Test statistics

For testing independence

$$
G^{2}=2 \sum_{i=1}^{I} \sum_{j=1}^{J} n_{i j} \log \left(\frac{n_{i j}}{\widehat{\mu}_{i j}}\right) \quad X^{2}=\sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(n_{i j}-\widehat{\mu}_{i j}\right)^{2}}{\widehat{\mu}_{i j}}
$$

With expected frequencies

$$
\widehat{\mu}_{i j}=\frac{n_{i+} n_{+j}}{n}=\frac{(\text { Row total })(\text { Column total })}{\text { Total total }}
$$

And degrees of freedom

$$
d f=(I-1)(J-1)
$$

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{LAT}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/312f12

