
Log-linear Part 5 

Fixed Margins and Logit Models 
Please read 6.1, 6.2, 6.4 



Product Multinomial Models 
•  Separate multinomial distribution for each 

combination of explanatory variable values. 
•  Very natural for experimental studies in which 

the explanatory variables are controlled by 
the investigator (ideally, with random 
assignment to experimental conditions). 
Marginal totals are fixed by the design. 

•  Also reasonable for observational studies if 
you want to do the analysis conditionally upon 
the values of the explanatory variables (as in 
conditional probability). 

•  (Note that standard regression methods are 
conditional). 



Marginal totals are fixed by the design 

•  Email fund-raising study 
•  3,000 emails (spam) asking for 

donations to a children’s charity 
•  Recipients have contributed in the past. 
•  They are randomly assigned to one of 6 

pictures of a child (500 each). 
•  Two explanatory variables: Picture of 

girl vs. boy, and type of disability 
•  Response variable is whether they 

make an online donation. 



Marginal table of Child’s gender by Type 
of disability is fixed by the design 

Wheelchair Down syndrome No disability 
Female 500 500 500 

Male 500 500 500 

spam <- numeric(12); dim(spam) <- c(2,3,2)
spamlabels <- list() # An empty list
spamlabels$Gender <- c("Female","Male")
spamlabels$Disability <- c("Wheelchair"," Down syndrome"," None Visible")
spamlabels$Donation <- c("Yes","No")
dimnames(spam) <- spamlabels
spam[,,1] <- rbind( c( 70, 29, 13),

c( 73, 19, 21) )
spam[,,2] <- rbind( c(430, 471, 487),

c(427, 481, 479) )



To fit a product multinomial model 
•  Use a standard multinomial log-linear model 

that  includes all interactions among 
explanatory variables, whether or not they 
significantly help model fit.  

•  Theorem: This yields same MLEs as a log-
linear model that directly incorporates the 
product multinomial structure. 

•  Idea:  If some marginals are fixed by the 
design, they are known exactly, and if their 
terms are omitted, fit will (usually) be worse. 
Use the information we have!  



Does it always matter if the interactions 
among explanatory variables are 

included? 

> # 1=Gender, 2=Disability, 3=Donation
> loglin(spam,list(c(1,2),c(1,3),c(2,3)))$lrt
3 iterations: deviation 0.005521471
[1] 4.238558
> loglin(spam,list(c(1,3),c(2,3)))$lrt
2 iterations: deviation 0
[1] 4.238726

Wheelchair Down syndrome No disability 
Female 500 500 500 

Male 500 500 500 

Not if there is exactly zero relationship between explanatory 
variables (“Balanced Design”). 



What about degrees of freedom 
for the goodness of fit test? 

•  Df = number of terms in the saturated model minus 
number of terms in the model under consideration 

•  Null hypothesis is that the terms that are in the 
saturated model but not in the model being 
considered are all zero. 

•  Terms that are known to be zero are also zero in 
the saturated model. 

•  Difference in df is the same. 
•  So you can trust the model with all interactions 

among explanatory variables. 



Or, if you really want to 

•  For balanced designs, you can fit the model 
with no interactions among explanatory 
variables, and count the degrees of freedom 
by hand. 

•  But remember, if sample sizes are all equal, 
main effects for the explanatory variables 
are missing too. 

•  For equal sample sizes, the correct no-
interaction model is usually not hierarchical. 



Situations where you might want a 
conditional model 

•  Experimental study that goes as planned – 
almost always balanced. 

•  Experimental study that goes wrong – drop 
a test tube, lose some data randomly with 
respect to response. Unbalanced design by 
accident. 

•  Observational study with clear distinction 
between explanatory and response vars. 
– Unbalanced (usually) 
– Balanced by selection (sometimes) 



If the design is 
•  Unbalanced:  Model with interactions 

among explanatory variables is mandatory 
(for a conditional model). Otherwise, estimates of 
parameters that are actually unknown partly compensate to 
fit the data, and are not as good as they could be. 

•  Balanced: Model with interactions among 
explanatory variables does the job and is 
usually less trouble. 

•  Note that conditional models for 
observational studies ignore information 
about relationships among explanatory 
variables. This is a weakness. 



Developing Linear Logit Models 

•  Logit means log odds 
•  Includes logistic regression 
•  These are all conditional models 

•  In the following example, suppose 
– Variables 1 and 2 are explanatory, Variable 

3 is response. 
– Variable 3 has just 2 categories (for now). 
– Conditional 



Conditional model 
log mijk = µ + µ1(i) + µ2(j) + µ3(k)

+ µ12(ij) + µ13(ik) + µ23(jk)

+ µ123(ijk)

Response category One minus category Two 

log mij1 − log mij2 = log
(

mij1

mij2

)

= log
(

pij1

pij2

)

= Conditional log odds



log mijk = µ + µ1(i) + µ2(j) + µ3(k)

+ µ12(ij) + µ13(ik) + µ23(jk)

+ µ123(ijk)

log
(

pij1

pij2

)
= log mij1 − log mij2

= [µ3(1) − µ3(2)]
+ [µ13(i1) − µ13(i2)] + [µ23(j1) − µ23(j2)]
+ [µ123(ijk) − µ123(ijk)]
+ [µ123(ij1) − µ123(ij2)]

= 2µ3(1) + 2µ13(i1) + 2µ23(j1) + 2µ123(ij1)

= 2
(
w + w1(i) + w2(j) + w12(ij)

)

A linear model for the log odds 



Roadmap 
•  Ordinary regression with dummy variables 

(review?) 
•  Logistic regression 

– With continuous variables 
– With dummy variables 

•  Poisson regression 
•  SAS (running under Linux) 

–  Introduction 
– Log-linear models, Logistic regression  

•  Logistic regression with 2+ categories (SAS) 
•  Logistic regression with ordered categorical 

responses (SAS) 


