Logistic Regression with more than two outcomes

Think of k-1 dummy variables for the dependent variable

Model for three categories

$$
\begin{aligned}
& \log \left(\frac{\pi_{1}}{\pi_{3}}\right)=\beta_{0,1}+\beta_{1,1} x_{1}+\ldots+\beta_{p-1,1} x_{p-1} \\
& \log \left(\frac{\pi_{2}}{\pi_{3}}\right)=\beta_{0,2}+\beta_{1,2} x_{1}+\ldots+\beta_{p-1,2} x_{p-1}
\end{aligned}
$$

Need $k-1$ generalized logits to represent a dependent variable with k categories

Meaning of the regression coefficients

$$
\begin{aligned}
& \log \left(\frac{\pi_{1}}{\pi_{3}}\right)=L_{1} \\
& \log \left(\frac{\pi_{2}}{\pi_{3}}\right)=L_{2}
\end{aligned}
$$

A positive regression coefficient for logit j means that higher values of the independent variable are associated with greater chances of response category j, compared to the reference category.

Solve for the probabilities

$$
\begin{array}{lll}
\log \left(\frac{\pi_{1}}{\pi_{3}}\right) & =L_{1} & \frac{\pi_{1}}{\pi_{3}}
\end{array}=e^{L_{1}}
$$

$$
\pi_{1}=\pi_{3} e^{L_{1}}
$$

So

$$
\pi_{2}=\pi_{3} e^{L_{2}}
$$

Three linear equations in 3 unknowns

$$
\begin{aligned}
& \pi_{1}=\pi_{3} e^{L_{1}} \\
& \pi_{2}=\pi_{3} e^{L_{2}}
\end{aligned}
$$

$$
\pi_{1}+\pi_{2}+\pi_{3}=1
$$

Solution

$$
\begin{aligned}
& \pi_{1}=\frac{e^{L_{1}}}{1+e^{L_{1}}+e^{L_{2}}} \\
& \pi_{2}=\frac{e^{L_{2}}}{1+e^{L_{1}}+e^{L_{2}}} \\
& \pi_{3}=\frac{1}{1+e^{L_{1}}+e^{L_{2}}}
\end{aligned}
$$

Example: One Binary Independent Variable

$$
\begin{aligned}
\log \left(\frac{\pi_{1}}{\pi_{3}}\right) & =\beta_{0,1}+\beta_{1,1} x=L_{1} \\
\log \left(\frac{\pi_{2}}{\pi_{3}}\right) & =\beta_{0,2}+\beta_{1,2} x=L_{2}
\end{aligned}
$$

	$Y=1$	$Y=2$	$Y=3$
$x=0$	$e^{e_{01}+e}$		
$x=1$			

In general, solve k equations in k unknowns

$$
\pi_{1}=\pi_{k} e^{L_{1}}
$$

$$
\pi_{k-1}=\pi_{k} e^{L_{k-1}}
$$

$$
\pi_{1}+\cdots+\pi_{k}=1
$$

General Solution

$$
\begin{aligned}
& \pi_{1}=\frac{e^{L_{1}}}{1+\sum_{j=1}^{k-1} e^{L_{j}}} \\
& \pi_{2}=\frac{e^{L_{2}}}{1+\sum_{j=1}^{k-1} e^{L_{j}}}
\end{aligned}
$$

$$
\begin{aligned}
\pi_{k-1} & =\frac{e^{L_{k-1}}}{1+\sum_{j=1}^{k-1} e^{L_{j}}} \\
\pi_{k} & =\frac{1}{1+\sum_{j=1}^{k-1} e^{L_{j}}}
\end{aligned}
$$

Using the solution, one can

- Calculate the probability of obtaining the observed data as a function of the regression coefficients: Get maximum likelihood estimates (β-hat values)
- From maximum likelihood estimates, get tests and confidence intervals
- Using β-hat values in L_{j}, estimate probabilities of category membership for any set of x values.

