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Background Reading
Optional

Data analysis with SAS, Chapter 8.

For technical details about the non-central distributions,
Rencher and Schaalje’s Linear models in statistics, Section
5.4
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How many subjects?

In planning an experiment, one of the biggest decisions is
how many experimental units you need.

Need for what?
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We never know the truth

We wish we knew the exact values of all the parameters,
but we never do.

All we can hope for is to make good decisions (guesses)
with high probability.

We might guess the exact value of a parameter: Estimation.

We might guess whether some statement about the
parameter is right: Testing.
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Estimate the value of a linear combination

` = a1µ1 + a2µ2 + · · ·+ apµp

ˆ̀ = a1Y 1 + a2Y 2 + · · ·+ apY p

The estimate will be wrong, with probability one.

What is the probability that the estimate will be wrong by
less than some margin of error m?

Choose sample size to make this probability acceptably
high.
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Expected value and variance

` = a1µ1 + a2µ2 + · · · + apµp
ˆ̀ = a1Y 1 + a2Y 2 + · · · + apY p

E(ˆ̀) = `

V ar(ˆ̀) =
σ2

n

p∑
j=1

a2j
fj

fj =
nj
n are relative sample sizes that add to one.

fj can be chosen to minimize the variance for any σ2 and n.

Assume they have been chosen in a smart way, and treat
them as fixed.
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Probability that ˆ̀ is close to `

First, what is the distribution of ˆ̀?

Pr{|ˆ̀− `| < m} = Pr


∣∣∣∣∣∣∣∣

ˆ̀− `√
σ2

n

∑p
j=1

a2j
fj

∣∣∣∣∣∣∣∣ ≤
m√

σ2

n

∑p
j=1

a2j
fj


= Pr

|Z| <
√
nm

σ

√∑p
j=1

a2j
fj
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Make the probability as large as you like

Pr

|Z| <
√
nm

σ

√∑p
j=1

a2j
fj



The probability increases to one as n→∞.
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The probability Pr

|Z| < √
nm

σ

√∑p
j=1

a2
j

fj



The probability increases to one as n→∞.
Set right hand side to 1.96 to and solve for n get a
probability of 0.95, etc.
The aj and fj are known.
The value of m depends on what you mean by “close.”
But σ is tougher.
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Do you really have to know σ?

Maybe you have a good idea of σ from other, similar
studies. This is most likely if you are planning a follow-up
study. Use

√
MSE.

Or maybe you can give a high guess and a low guess of σ,
and get a range of sample sizes you might need.

This is a lot of guessing.

There is another possibility.
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Another way out

Try to express the desired margin of error in units of the
common standard deviation σ.

“Say something like “I want my estimate to be within
one-tenth of a standard deviation of the correct answer,
with probability 0.90.

To get an idea of what this means, the mean heights of
Canadian men and women are about two standard
deviations apart.

A poll estimates that 40% intend to vote for a candidate,
and says “These results are expected to be accurate within
four percentage points, 19 times out of 20.” They are
estimating a margin of error of around 0.08 of a standard
deviation, with probability 0.95.
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Express the desired margin of error in units of σ
Replace m with mσ

Pr

|Z| <
√
nmZσ

Zσ

√∑p
j=1

a2j
fj

 = Pr

|Z| <
√
nm√∑p
j=1

a2j
fj


To get probability 1− α, set

zα/2 =

√
nm√∑p
j=1

a2j
fj
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Solve for n

zα/2 =

√
nm√∑p
j=1

a2j
fj

⇔ n =
z2α/2

∑p
j=1

a2j
fj

m2

And take the next higher integer. If you “know” σ, let

n =
σ2 z2α/2

∑p
j=1

a2j
fj

m2
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Estimate µ1 − µ2

We want the estimate to be accurate to within σ
10 , with

probability 0.95.

m = 1
10 standard deviations.

a1 = 1, a2 = −1

Equal sample sizes, so f1 = f2 = 1
2

zα/2 = 1.96

n =
z2α/2

∑p
j=1

a2j
fj

m2

=
1.962( 12

1/2 + (−1)2
1/2 )

(1/10)2

= 1536.64

So need n = 1537, or n1 = n2 = 1538/2 = 769 per group.
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Testing (null) hypotheses

Goal is to make correct decisions with high probability.

When H0 is true, probability of a correct decision (don’t
reject) is 1− α. That’s guaranteed if the model is correct.

When H0 if false, we want to reject it with high probability.

The probability of rejecting the null hypothesis when the
null hypothesis is false is called the power of the test.

Power is one minus the probability of a Type II error.

It is a function of the true parameter values.

And also the design, including total sample size.
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Power is an increasing function of sample size

Usually, when H0 is false, larger sample size yields larger
power.

If power goes to one as a limit when H0 is false (regardless
of the exact parameter values) the test is called consistent.

Most commonly used tests are consistent, including the
general linear F -test.

This means that if H0 is false, you can make the power as
high as you wish by making the sample size bigger.
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Strategy

Pick an effect you’d like to be able to detect. An “effect”
means a way that H0 is wrong. It should be just over the
boundary of interesting and meaningful.

Pick a desired power – a probability with which you’d like
to be able to detect the effect by rejecting the null
hypothesis.

Start with a fairly small n and calculate the power.
Increase the sample size until the desired power is reached.
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Distribution theory

We need to study the distribution of the test statistic when
the null hypothesis is false.

All the distributions you’ve seen (Z, t, χ2, F ) were derived
under the assumption that H0 is true.

Here we go.
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Intermediate Goal

For the regression model Y = Xβ + ε

Testing H0 : Cβ = t

We need to know the distribution of the F statistic when
H0 is false.

It will be called the “non-central” F distribution.
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Non-central chi-square with df = 1

Let Z ∼ N(µ, 1). Then W = (Z − µ)2 ∼ χ2(1), and

MW (t) = (1− 2t)−
1
2 . If Z is not “centered” by subtracting off µ,

MZ2(t) = E(eZ
2t)

=
1√
2π

∫ ∞
−∞

ez
2t e−

1
2
(z−µ)2 dz

= (1− 2t)−
1
2 eµ

2t/(1−2t)

for t < 1/2.

20 / 48



Introduction Estimation Testing (Power)

Definition of the non-central chi-squared distribution
Generalizing MW (t) = (1 − 2t)−

1
2 eµ

2t/(1−2t)

The positive random variable W is said to have a non-central
chi-squared distribution with degrees of freedom ν > 0 and
non-centrality parameter λ ≥ 0 if

MW (t) = (1− 2t)−
ν
2 e

λt
1−2t

for t < 1/2.

If λ = 0, this reduces to the ordinary central chi-squared.

We have seen that if Z ∼ N(µ, 1), then
W = Z2 ∼ χ2(ν = 1, λ = µ2).
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Sum of independent chi-squares
Use MW (t) = (1 − 2t)−

ν
2 e

λt
1−2t

Let Z1, . . . , Zp
ind∼ N(µj , 1), and W =

∑p
j=1 Z

2
j . Then

MW (t) =

p∏
j=1

MZ2
j
(t)

=

p∏
j=1

(1− 2t)−
1
2 eµ

2
j t/(1−2t)

= (1− 2t)−
p
2 e

(
∑p
j=1

µ2j)t
1−2t

So W = Z′Z ∼ χ2
(
p, λ =

∑p
j=1 µ

2
j

)
.
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Non-central F

Let W1 ∼ χ2(ν1, λ) and W2 ∼ χ2(ν2) be independent. Then

F ∗ =
Y1/ν1
Y2/ν2

∼ F (ν1, ν2, λ)

is said to have a non-central F distribution with degrees of
freedom ν1 and ν2, and non-centrality parameter λ. Write
F ∗ ∼ F (ν1, ν2, λ).

Reduces to the ordinary central F when λ = 0.

Good numerical numerical methods are available for
calculating the probabilities.
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Theorem
Proof omitted

If F ∗ ∼ F (ν1, ν2, λ), then

F ∗ is stochastically increasing in λ, meaning that for every
x > 0, Pr{F ∗ > x|λ} is an increasing function of λ.

That is, the bigger the non-centrality parameter, the
greater the probability of getting F ∗ above any point (such
as a critical value).

limλ→∞Pr{F ∗ > x|λ} = 1.
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Heading for the general linear test of H0 : Cβ = t
With F = (Cβ̂−t)′(C(X′X)−1C′)−1(Cβ̂−t)

qMSE

Let Y ∼ Np(µ,Σ).

Recall (Y − µ)′Σ−1(Y − µ) ∼ χ2(p)

When Y is not centered,

Y′Σ−1Y ∼ χ2(p,µ′Σ−1µ).
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Let Y ∼ Np(µ,Σ). Then Y′Σ−1Y ∼ χ2(p,µ′Σ−1µ).
Proof

Because Σ is symmetric and positive definite, the symmetric
matrix Σ−1/2 exists.

Let Z = Σ−1/2Y. Note Z′Z = Y′Σ−1Y.

Z is multivariate normal with E(Z) = Σ−1/2µ and

cov(Z) = Σ−1/2cov(Y)(Σ−1/2)′

= Σ−1/2ΣΣ−1/2

= Σ−1/2Σ1/2Σ1/2Σ−1/2

= I · I = I

Thus the elements of Z are independent normal with variance
one, and

∑p
j=1 Z

2
j = Z′Z is non-central chi-squared with df = p

and non-centrality parameter λ =
∑p

j=1E(Zj)
2 = E(Z)′E(Z) =(

Σ−1/2µ
)′

Σ−1/2µ = µ′Σ−1µ. �
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General linear test

Assume the linear model Y = Xβ + ε

H0 : Cβ = t may be false.

F ∗ =
(Cβ̂ − t)′(C(X′X)−1C′)−1(Cβ̂ − t)/q

MSE
∼ F (q, n− p, λ)

where

λ =
(Cβ − t)′(C(X′X)−1C′)−1(Cβ − t)

σ2
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To show it

Recall that if Y ∼ Np(µ,Σ), then Y′Σ−1Y ∼ χ2(p,µ′Σ−1µ).

β̂ ∼ Np

(
β, σ2(X′X)−1

)
Y = Cβ̂ − t ∼ Nq(Cβ − t, σ2C(X′X)−1C′)

So with µ = Cβ − t and Σ = σ2C(X′X)−1C′, the
numerator is non-central chi-squared divided by df .

F ∗ =
(Cβ̂ − t)′(C(σ2X′X)−1C′)−1(Cβ̂ − t)/q

MSE/σ2

SSE/σ2 ∼ χ2(n− p) regardless of H0.

And numerator and denominator are independent because
β̂ and SSE are independent.
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The greater the non-centrality parameter λ, the greater
the power
If H0 is false

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

x

D
en
si
ty

Power of the F test with λ = 15
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What makes λ big?

λ =
(Cβ − t)′(C(X′X)−1C′)−1(Cβ − t)

σ2

Small σ2.

Null hypothesis very wrong.

Relative sample sizes.

Total sample size big.

But sample size is hidden in the X′X matrix.
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With cell means coding

Assume there are p treatment combinations.

The X matrix has exactly one 1 in each row, and all the
rest zeros.

There are nj ones in each column.

X′X =


n1 0 · · · 0
0 n2 · · · 0
...

...
. . .

...
0 0 · · · np



31 / 48



Introduction Estimation Testing (Power)

Multiplying and dividing by n
λ = (Cβ−t)′(C(X′X)−1C′)−1(Cβ−t)

σ2

λ = n×(
Cβ − t

σ
)′(C


1/f1 0 · · · 0

0 1/f2 · · · 0
...

...
. . .

...
0 0 · · · 1/fp

C′)−1(
Cβ − t

σ
)

f1, . . . fp are relative sample sizes: fj = nj/n

Cβ − t is an effect, a particular way in which the null hypothesis is
wrong. It is naturally expressed in units of the common
within-treatment standard deviation sigma, and in general there is no
reasonable way to avoid it.

Almost always, t = 0.

The non-centrality parameter is sample size times a quantity that is
sometimes called “effect size.”

The idea is that effect size represents how wrong H0 is.
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Example: Comparing two means

Suppose we have a random sample of size n1 from a normal
distribution with mean µ1 and variance σ2, and independently,
a second random sample from a normal distribution with mean
µ2 and variance σ2. We wish to test H0 : µ1 = µ2 versus the
alternative Ha : µ1 6= µ2. If the true means are a half a
standard deviation apart, we want to be able to detect it with
probability 0.80.

We’ll do it with cell means coding, letting xi,1 = 1 if observation
i is from treatment one (and zero otherwise), and xi,2 = 1 if
observation i is from treatment two (and zero otherwise).

The model is Yi = β1xi,1 + β2xi,2 + εi

β1 = µ1, β2 = µ2

H0 : β1 − β2 = 0
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H0 : Cβ = t

C = (1,−1)

β =

(
β1
β2

)
t = (0)

λ = n×
(

Cβ − t

σ

)′
(C

(
1/f1 0

0 1/(1− f1)

)
C′)−1

(
Cβ − t

σ

)
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Continuing the calculation

λ = n

(
Cβ − t

σ

)′
(C

(
1/f1 0

0 1/(1− f1)

)
C′)−1

(
Cβ − t

σ

)
= n

(
µ1 − µ2

σ

)(
1

f1
+

1

1− f1

)−1(µ1 − µ2
σ

)
= n f1(1− f1)

(
µ1 − µ2

σ

)2

= n f1(1− f1) d2
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λ = nf(1− f)d2, where f = n1
n and d = |µ1−µ2|

σ

For two-sample problems, d is usually called effect size.
The effect size specifies how wrong the null hypothesis is,
by expressing the absolute difference between means in
units of the common within-cell standard deviation.

The non-centrality parameter (and hence, power) depends
on the three parameters µ1, µ2 and σ2 only through the
effect size d.

Power depends on sample size, effect size and an aspect of
design allocation of relative sample size to treatments.
Equal sample sizes yield the highest power in the 2-sample
case.
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Back to the problem
λ = nf(1 − f)d2

We wish to test H0 : µ1 = µ2 versus the alternative
Ha : µ1 6= µ2. If the true means are a half a standard deviation
apart, we want to be able to detect it with probability 0.80.

λ = nf(1− f)

(
|µ1 − µ2|

σ

)2

= n
1

2

(
1− 1

2

)(
1

2

)2

=
n

16
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SAS proc iml

/***************** fpow1.sas *********************/

options linesize=79 noovp formdlim=’_’ nodate;

title ’Two-sample power analysis’;

proc iml; /* Replace alpha, q, p, d and wantpow below */

alpha = 0.05; /* Signif. level for testing H0: C Beta = t */

q = 1; /* Numerator df = # rows in C matrix */

p = 2; /* There are p beta parameters */

d = 1/2; /* d = |mu1-mu2|/sigma */

wantpow = .80; /* Find n to yield this power */

power = 0; n = p; oneminus = 1-alpha; /* Initializing ... */

do until (power >= wantpow);

n=n+1 ;

ncp = n * 1/4 * d**2;

df2 = n-p;

power = 1-probf(finv(oneminus,q,df2),q,df2,ncp);

end;

print alpha p q d wantpow;

print "Required sample size is " n;

print "For a power of " power;

/**********************************************************
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Output

Two-sample power analysis 1

alpha p q d wantpow

0.05 2 1 0.5 0.8

n

Required sample size is 128

power

For a power of 0.8014596
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To do a power analysis for any factorial design
H0 : Cβ = t

All you need is a vector of relative sample sizes and a vector of
numbers representing the differences between Cβ and t in units
of sigma.

λ = n×
(

Cβ − t

σ

)′
(C


1/f1 0 · · · 0

0 1/f2 · · · 0
...

...
. . .

...
0 0 · · · 1/fp

C′)−1
(

Cβ − t

σ

)
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Example: Test for interaction

Level of B

Level of A 1 2 Average

1 µ11 µ12 µ1.
2 µ21 µ22 µ2.
3 µ31 µ32 µ3.

Average µ.1 µ.2 µ..

H0 : µ11 − µ12 = µ21 − µ22 = µ31 − µ32
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H0 : µ11 − µ12 = µ21 − µ22 = µ31 − µ32

C β = t

(
1 −1 −1 1 0 0
0 0 1 −1 −1 1

)


µ11
µ12
µ21
µ22
µ31
µ32

 =

(
0
0

)

Suppose this null hypothesis is false in a particular way that we
want to be able to detect.
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Null hypothesis is wrong

Suppose that for A = 1 and A = 2, the population mean of Y is a
quarter of a standard deviation higher when B = 2, but if A = 3, the
population mean of Y is a quarter of a standard deviation higher for
B = 1. Of course there are infinitely many sets of means satisfying
these constraints, even if they are expressed in standard deviation
units. But they will all have the same effect size. One such pattern is
the following.

Level of B
Level of A 1 2

1 0.000 0.250
2 0.000 0.250
3 0.000 -0.250

Sample sizes are all equal, and we want to be able to detect an effect

of this magnitude with probability at least 0.80.
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All we need is true Cβ
H0 : Cβ = 0 is wrong.

Level of B

Level of A 1 2

1 0.000 0.250

2 0.000 0.250

3 0.000 -0.250

Cβ =

(
0

−0.5

)
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Matrix calculations with proc iml
λ = (Cβ−t)′(C(X′X)−1C′)−1(Cβ−t)

σ2

/***************** fpow2.sas *********************/

options linesize=79 noovp formdlim=’_’;

title ’Sample size calculation for the interaction example’;

proc iml;

/********* Edit this input: Rows of matrices are separated by commas ********/

alpha = 0.05; wantpow = .80;

f = {1,1,1,1,1,1}; /* Relative sample sizes */

C = { 1 -1 -1 1 0 0, /* Contrast matrix */

0 0 1 -1 -1 1};

eff = {0, 0.5}; /* In standard deviation units */

/*****************************************************************************/
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fpow2.sas continued
λ = (Cβ−t)′(C(X′X)−1C′)−1(Cβ−t)

σ2

p = nrow(f) ; q = nrow(eff); f = f/sum(f);

core = inv(C*inv(diag(f))*C‘);

effsize = eff‘*core*eff;

power = 0; n = p; oneminus = 1-alpha; /* Initializing ...*/

do until (power >= wantpow);

n = n+1 ;

ncp = n * effsize;

df2 = n-p;

power = 1-probf(finv(oneminus,q,df2),q,df2,ncp);

end; /* End Loop */

print " ";

print " Required sample size is " n " for a power of " power;

print " " ;

/**********************************************************
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Output

Sample size calculation for the interaction example 1

n power

Required sample size is 697 for a power of 0.8001726

697/6 = 116.1667 and 117 ∗ 6 = 702, so a total of n = 702
experimental units are needed for equal sample sizes.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/305s14

48 / 48

http://www.utstat.toronto.edu/~brunner
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://www.utstat.toronto.edu/~brunner/oldclass/305s14

	Introduction
	Estimation
	Testing (Power)

