The mysterious beauty of the analysis of covariance ${ }^{1}$ STA305 Winter 2014

${ }^{1}$ See last slide for copyright information.

Background Reading

Optional

■ Chapter 5 in Data analysis with SAS presents some important parts of this material as a special case of regression.

Basic idea

- Lots of things influence the response other than the treatment.
- Because of random assignment, they are independent of the treatment.
- They all go into the error (background noise) term $\epsilon_{i j}$.
- $\sigma^{2}=\operatorname{Var}\left(\epsilon_{i j}\right)$ is the loudness of the background noise.
- Reduce loudness of background noise by measuring important influences and including them in the model.
- Make sure that the treatment is not influencing the covariate.

It's just another regression model

The $d_{i, j}$ are dummy variables for the treatments

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} d_{i, 1}+\cdots+\beta_{p-1} d_{i, p-1}+\epsilon_{i} \\
& =\beta_{0}^{\prime}+\beta_{1} d_{i, 1}+\cdots+\beta_{p-1} d_{i, p-1}+\left(\alpha_{1} X_{i 1}+\cdots+\alpha_{k} X_{i k}+e_{i}\right) \\
& =\mathbf{X}_{i}^{\prime} \boldsymbol{\alpha}+\mathbf{d}_{i}^{\prime} \boldsymbol{\beta}+e_{i}
\end{aligned}
$$

■ $\operatorname{Var}\left(e_{i}\right)<\operatorname{Var}\left(\epsilon_{i}\right)$.

- The $X_{i, j}$ are called covariates.

■ They are random variables, but treat them as fixed.

- This is the usual conditional regression model.
- The assumption of unit-treatment additivity implies parallel regression planes.

Technical issues with the model $Y_{i}=\mathbf{x}_{i}^{\prime} \boldsymbol{\alpha}+\mathbf{d}_{i}^{\prime} \boldsymbol{\beta}+e_{i}$

■ Assume this model is conditional on $\mathbf{X}_{i}=\mathbf{x}_{i}$.
■ Error terms e_{i} are identically distributed given $\mathbf{X}_{i}=\mathbf{x}_{i}$.
■ So the model assumes e_{i} and \mathbf{X}_{i} are independent.

- Thus any other omitted variables that influence Y_{i} must be independent of the covariates.
■ Impossible to believe, and a well-known recipe for trouble.
■ Also, covariates are surely measured with error, another recipe for trouble.

Does it still work?

A simple example

The true model (e_{i} is different now)

- Binary dummy variable for experimental treatment.
- One covariate measured with error.

■ One omitted variable, correlated with the (true) covariate.

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} d_{i}+\alpha_{1} X_{i 1}+\alpha_{2} X_{i 2}+\epsilon_{i} \\
W_{i} & =\lambda_{0}+\lambda_{1} X_{i 1}+e_{i}
\end{aligned}
$$

■ Observe $\left(d_{i}, W_{i}, Y_{i}\right)$.
■ Fit $Y_{i}=\beta_{0}^{*}+\beta_{1}^{*} d_{i}+\beta_{2}^{*} w_{i}+\delta_{i}$

- Interest is in $\beta_{1}=\Delta$.

A simulation study

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} d_{i}+\alpha_{1} X_{i 1}+\alpha_{2} X_{i 2}+\epsilon_{i} \\
W_{i} & =\lambda_{0}+\lambda_{1} X_{i 1}+e_{i}
\end{aligned}
$$

- X_{1} and X_{2} are both strongly related to Y.
- X_{1} and X_{2} are strongly correlated.
- Lots of measurement error.
- $n_{1}=n_{2}=64$
\square Fit $Y_{i}=\beta_{0}^{*}+\beta_{1}^{*} d_{i}+\beta_{2}^{*} w_{i}+\delta_{i}$
■ Test $H_{0}: \beta_{1}^{*}=0$ ten thousand times when $\beta_{1}=0$ is true, and there is no treatment effect.

No inflation of Type I error probability

■ Did it both ways, with and without the (corrupted) covariate W_{i}.

- Without covariate: $p \approx 0.0464$

■ With covariate: $p \approx 0.0537$

- These are typical results.

Sampling distribution of $\widehat{\Delta}$

Based on ten thousand simulated data sets

Without Covariate

With Covariate

$\operatorname{Var}(\widehat{\Delta})$ is smaller with the covariate

- Without covariate, exactly $\sigma^{2 \prime}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)=0.48125$
- With covariate, approximately 0.2769367 based on the sample variance of 10,000 estimates.
- Had $n_{1}=n_{2}=64$. Keeping equal sample sizes, what sample size is needed to achieve this precision without the covariate?

$$
\begin{array}{ll}
& 15.4\left(\frac{1}{n_{1}}+\frac{1}{n_{1}}\right)=0.2769367 \\
\Leftrightarrow & n_{1}=111.2
\end{array}
$$

■ Need about $111+111=222$ experimental units to get the same precision without the covariate.

- The covariate is worth about $222-128=94$ experimental units.
- An estimator with lower variance is said to be more efficient.

Why does the analysis of covariance work so well?
When the model is so wrong

After a lot of work,

$$
\begin{aligned}
\widehat{\Delta}= & \frac{\hat{\sigma}_{w}^{2}\left(\bar{Y}_{1}-\bar{Y}_{2}\right)-\hat{\sigma}_{w y}\left(\bar{W}_{1}-\bar{W}_{2}\right)}{\hat{\sigma}_{w}^{2}+q(1-q)\left(\bar{W}_{1}-\bar{W}_{2}\right)^{2}} \\
= & \left(\frac{\hat{\sigma}_{w}^{2}}{\hat{\sigma}_{w}^{2}+q(1-q)\left(\bar{W}_{1}-\bar{W}_{2}\right)^{2}}\right)\left(\bar{Y}_{1}-\bar{Y}_{2}\right) \\
& -\frac{\hat{\sigma}_{w y}\left(\bar{W}_{1}-\bar{W}_{2}\right)}{\hat{\sigma}_{w}^{2}+q(1-q)\left(\bar{W}_{1}-\bar{W}_{2}\right)^{2}}
\end{aligned}
$$

And $\bar{W}_{1}-\bar{W}_{2} \rightarrow 0$ as $n \rightarrow \infty$.

The real reason it works (Details omitted)

■ If covariates were unrelated to omitted variables and measured without error, everything would be fine.

■ Call this the "pretend model."

- But actually, covariates are related to omitted variables and measured with error.
■ Call this the "true model."
- Data from the pretend model are indistinguishable from data from the true model.
- This does not always happen.

Parameters

- The true model has more parameters (13 versus 6 in the example).
- Parameters of the pretend model are functions of parameters of the true model.
■ Regression coefficients of the dummy variables are the same under both models. This is the key.
- It happens only because of random assignment.
- Other parameters of the pretend model are crazy functions of the parameters of the true model.
- But estimation and inference about the treatment effects are excellent (as usual) under the pretend model.

For the little example

$$
\begin{aligned}
Y_{i} & =\beta_{0}+\beta_{1} d_{i}+\alpha_{1} X_{i 1}+\alpha_{2} X_{i 2}+\epsilon_{i} \\
W_{i} & =\lambda_{0}+\lambda_{1} X_{i 1}+e_{i} \\
Y_{i} & =\beta_{0}^{*}+\beta_{1}^{*} d_{i}+\beta_{2}^{*} W_{i}+\delta_{i}
\end{aligned}
$$

- $\beta_{1}^{*}=\beta_{1}$
- $\operatorname{Var}\left(W_{i}\right)=\lambda_{1}^{2} \phi_{11}+\omega$
- $\beta_{2}^{*}=\frac{\lambda_{1}\left(\alpha_{1} \phi_{11}+\alpha_{2} \phi_{12}\right)}{\lambda_{1}^{2} \phi_{11}+\omega}$
- $\operatorname{Var}\left(\delta_{i}\right)$ is breathtaking.

Moral of the story

- Analysis of covariance can greatly increase the precision of an analysis by reducing background noise.
- Precision of estimation translates directly into time and money.
- The covariates may be measured with error and related to other important but unknown variables that influence the dependent variable.
- As long as there is random assignment, it still works beautifully even though the model is wrong.
- Technically, the analysis of covariance model is "equivalent to a re-parameterization."
- Of course you must be sure that the treatment is not influencing the covariate.

Assumption of Unit-treatment additivity

- Without any treatment, the response is $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$.
- Treatment j just adds Δ_{j} to the response, moving all the responses of the units in condition j up (or down) by Δ_{j}.
- Write it as a multiple regression model with dummy variables:

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} d_{i, 1}+\beta_{3} d_{i, 2}+\epsilon_{i}
$$

- Make a table.

Equal slopes model

$$
Y=\beta_{0}+\beta_{1} x+\beta_{2} d_{1}+\beta_{3} d_{2}+\epsilon
$$

Treatment	d_{1}	d_{2}	$E(Y \mid \mathbf{x})$
1	1	0	$\left(\beta_{0}+\beta_{2}\right)+\beta_{1} x$
2	0	1	$\left(\beta_{0}+\beta_{3}\right)+\beta_{1} x$
3	0	0	$\beta_{0}+\beta_{1} x$

Look at the least squares means

$$
\hat{Y}=\hat{\beta}_{0}+\hat{\beta}_{1} x+\hat{\beta}_{2} d_{1}+\hat{\beta}_{3} d_{2}
$$

Treatment	d_{1}	d_{2}	Estimated Response
1	1	0	$\left(\hat{\beta}_{0}+\hat{\beta}_{2}\right)+\hat{\beta}_{1} \bar{x}$
2	0	1	$\left(\hat{\beta}_{0}+\hat{\beta}_{3}\right)+\hat{\beta}_{1} \bar{x}$
3	0	0	$\hat{\beta}_{0}+\hat{\beta}_{1} \bar{x}$

- The least squares means are actually \hat{Y} values.

■ In plain language, call them "corrected means," or something like "average teaching evaluation, corrected for teacher's age."

Equal slopes assumption is testable

■ Interaction means slopes are not equal: "It depends."
■ Form a product of quantitative variable by each dummy variable for the categorical variable.

$$
Y=\beta_{0}+\beta_{1} x+\beta_{2} d_{1}+\beta_{3} d_{2}+\beta_{4} x d_{1}+\beta_{5} x d_{2}+\epsilon
$$

- Make a table.

Unequal slopes model

$$
Y=\beta_{0}+\beta_{1} x+\beta_{2} d_{1}+\beta_{3} d_{2}+\beta_{4} x d_{1}+\beta_{5} x d_{2}+\epsilon
$$

Treatment	d_{1}	d_{2}	$E(Y \mid \mathbf{x})$
1	1	0	$\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{4}\right) x$
2	0	1	$\left(\beta_{0}+\beta_{3}\right)+\left(\beta_{1}+\beta_{5}\right) x$
3	0	0	$\beta_{0}+\beta_{1} \quad x$

Sample questions

Group	d_{1}	d_{2}	$E(Y \mid \mathbf{x})$
1	1	0	$\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{4}\right) x$
2	0	1	$\left(\beta_{0}+\beta_{3}\right)+\left(\beta_{1}+\beta_{5}\right) x$
3	0	0	$\beta_{0}+\beta_{1} \quad x$

What null hypothesis would you test?

- Are all the slopes equal?

■ Compare slopes for group one vs three.

- Compare slopes for group one vs two.
- Is there an interaction between treatment and covariate?
- Test the null hypothesis of equal regressions.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The ${ }^{\mathrm{E}} \mathrm{T}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/~ brunner/oldclass/305s14

