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Background Reading
Optional

Chapter 5 in Data analysis with SAS presents some
important parts of this material as a special case of
regression.
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Basic idea

Lots of things influence the response other than the
treatment.

Because of random assignment, they are independent of the
treatment.

They all go into the error (background noise) term εij .

σ2 = V ar(εij) is the loudness of the background noise.

Reduce loudness of background noise by measuring
important influences and including them in the model.

Make sure that the treatment is not influencing the
covariate.
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It’s just another regression model
The di,j are dummy variables for the treatments

Yi = β0 + β1di,1 + · · ·+ βp−1di,p−1 + εi

= β′0 + β1di,1 + · · ·+ βp−1di,p−1 + (α1Xi1 + · · ·+ αkXik + ei)

= X′iα + d′iβ + ei

V ar(ei) < V ar(εi).

The Xi,j are called covariates.

They are random variables, but treat them as fixed.

This is the usual conditional regression model.

The assumption of unit-treatment additivity implies
parallel regression planes.
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Technical issues with the model Yi = x′iα + d′iβ + ei

Assume this model is conditional on Xi = xi.

Error terms ei are identically distributed given Xi = xi.

So the model assumes ei and Xi are independent.

Thus any other omitted variables that influence Yi must be
independent of the covariates.

Impossible to believe, and a well-known recipe for trouble.

Also, covariates are surely measured with error, another
recipe for trouble.

Does it still work?
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A simple example
The true model (ei is different now)

Binary dummy variable for experimental treatment.

One covariate measured with error.

One omitted variable, correlated with the (true) covariate.

Yi = β0 + β1di + α1Xi1 + α2Xi2 + εi

Wi = λ0 + λ1Xi1 + ei

Observe (di,Wi, Yi).

Fit Yi = β∗0 + β∗1di + β∗2wi + δi

Interest is in β1 = ∆.
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A simulation study

Yi = β0 + β1di + α1Xi1 + α2Xi2 + εi

Wi = λ0 + λ1Xi1 + ei

X1 and X2 are both strongly related to Y .

X1 and X2 are strongly correlated.

Lots of measurement error.

n1 = n2 = 64

Fit Yi = β∗0 + β∗1di + β∗2wi + δi

Test H0 : β∗1 = 0 ten thousand times when β1 = 0 is true,
and there is no treatment effect.
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No inflation of Type I error probability

Did it both ways, with and without the (corrupted)
covariate Wi.

Without covariate: p ≈ 0.0464

With covariate: p ≈ 0.0537

These are typical results.

8 / 22



Sampling distribution of ∆̂
Based on ten thousand simulated data sets
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V ar(∆̂) is smaller with the covariate

Without covariate, exactly σ2′
(

1
n1

+ 1
n2

)
= 0.48125

With covariate, approximately 0.2769367 based on the
sample variance of 10,000 estimates.
Had n1 = n2 = 64. Keeping equal sample sizes, what
sample size is needed to achieve this precision without the
covariate?

15.4

(
1

n1
+

1

n1

)
= 0.2769367

⇔ n1 = 111.2

Need about 111+111=222 experimental units to get the
same precision without the covariate.
The covariate is worth about 222-128=94 experimental
units.
An estimator with lower variance is said to be more
efficient. 10 / 22



Why does the analysis of covariance work so well?
When the model is so wrong

After a lot of work,

∆̂ =
σ̂2w(Y 1 − Y 2)− σ̂wy(W 1 −W 2)

σ̂2w + q(1− q)(W 1 −W 2)2

=

(
σ̂2w

σ̂2w + q(1− q)(W 1 −W 2)2

)
(Y 1 − Y 2)

− σ̂wy(W 1 −W 2)

σ̂2w + q(1− q)(W 1 −W 2)2

And W 1 −W 2 → 0 as n→∞.
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The real reason it works (Details omitted)

If covariates were unrelated to omitted variables and
measured without error, everything would be fine.

Call this the “pretend model.”

But actually, covariates are related to omitted variables
and measured with error.

Call this the “true model.”

Data from the pretend model are indistinguishable from
data from the true model.

This does not always happen.

12 / 22



Parameters

The true model has more parameters (13 versus 6 in the
example).

Parameters of the pretend model are functions of
parameters of the true model.

Regression coefficients of the dummy variables are the
same under both models. This is the key.

It happens only because of random assignment.

Other parameters of the pretend model are crazy functions
of the parameters of the true model.

But estimation and inference about the treatment effects
are excellent (as usual) under the pretend model.

13 / 22



For the little example

Yi = β0 + β1di + α1Xi1 + α2Xi2 + εi

Wi = λ0 + λ1Xi1 + ei

Yi = β∗0 + β∗1di + β∗2Wi + δi

β∗1 = β1

V ar(Wi) = λ21φ11 + ω

β∗2 = λ1(α1φ11+α2φ12)
λ21φ11+ω

V ar(δi) is breathtaking.
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Moral of the story

Analysis of covariance can greatly increase the precision of
an analysis by reducing background noise.

Precision of estimation translates directly into time and
money.

The covariates may be measured with error and related to
other important but unknown variables that influence the
dependent variable.

As long as there is random assignment, it still works
beautifully even though the model is wrong.

Technically, the analysis of covariance model is “equivalent
to a re-parameterization.”

Of course you must be sure that the treatment is not
influencing the covariate.
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Assumption of Unit-treatment additivity

Without any treatment, the response is Yi = β0 + β1xi + εi.

Treatment j just adds ∆j to the response, moving all the
responses of the units in condition j up (or down) by ∆j .

Write it as a multiple regression model with dummy
variables:

Yi = β0 + β1xi + β2di,1 + β3di,2 + εi

Make a table.
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Equal slopes model

Y = β0 + β1x+ β2d1 + β3d2 + ε

Treatment d1 d2 E(Y |x)

1 1 0 (β0 + β2) + β1x

2 0 1 (β0 + β3) + β1x

3 0 0 β0 + β1x
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Look at the least squares means

Ŷ = β̂0 + β̂1x+ β̂2d1 + β̂3d2

Treatment d1 d2 Estimated Response

1 1 0 (β̂0 + β̂2) + β̂1x

2 0 1 (β̂0 + β̂3) + β̂1x

3 0 0 β̂0 + β̂1x

The least squares means are actually Ŷ values.

In plain language, call them “corrected means,” or
something like “average teaching evaluation, corrected for
teacher’s age.”
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Equal slopes assumption is testable

Interaction means slopes are not equal: “It depends.”

Form a product of quantitative variable by each dummy
variable for the categorical variable.

Y = β0 + β1x+ β2d1 + β3d2 + β4x d1 + β5x d2 + ε

Make a table.
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Unequal slopes model

Y = β0 + β1x+ β2d1 + β3d2 + β4x d1 + β5x d2 + ε

Treatment d1 d2 E(Y |x)

1 1 0 (β0 + β2) + (β1 + β4)x

2 0 1 (β0 + β3) + (β1 + β5)x

3 0 0 β0 + β1 x
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Sample questions

Group d1 d2 E(Y |x)

1 1 0 (β0 + β2) + (β1 + β4)x

2 0 1 (β0 + β3) + (β1 + β5)x

3 0 0 β0 + β1 x

What null hypothesis would you test?

Are all the slopes equal?

Compare slopes for group one vs three.

Compare slopes for group one vs two.

Is there an interaction between treatment and covariate?

Test the null hypothesis of equal regressions.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use
any part of it as you like and share the result freely. The
LATEX source code is available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/305s14
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