STA 302 Summer 2001 Quiz Five

1. (4 points) For the Brand Preference data, obtain a 95% prediction interval for the mean of three new observations that will all have $X_{h 1}=$ 5 and $X_{h 2}=4$. The critical value you need is $t(.975 ; 13)=2.16$.
2. In a market research study on shoe sales, Y represents sales, x_{1} is price, and s_{1}, s_{2} and s_{3} are dummy variables for season, defined as follows: $s_{1}=1$ if winter and zero otherwise, $s_{2}=1$ if spring and zero otherwise, and $s_{3}=1$ if fall and zero otherwise. The model (supressing $i=1, \ldots, n)$ is

$$
Y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} s_{1}+\beta_{3} s_{2}+\beta_{4} s_{3}+\beta_{5} x_{1} s_{1}+\beta_{6} x_{1} s_{2}+\beta_{7} x_{1} s_{3}+\epsilon
$$

(a) (2 points) In this question, if the symbols s_{1}, s_{2} and s_{3} appear in your answer, it is wrong.
i. What is $E[Y]$ for Winter?
ii. What is $E[Y]$ for Spring?
iii. What is $E[Y]$ for Fall?
iv. What is $E[Y]$ for Summer?
(b) (2 points) The Marketing Manager believes that the slope of the line relating price to expected sales should be the same in the Winter, Spring and Fall. She has no firm opinion about whether it might be different in Summer. You are asked to formally test the Manager's idea. Give just the \mathbf{C} matrix in $H_{0}: \mathbf{C} \boldsymbol{\beta}=\mathbf{0}$.
(c) (2 points) Suppose you wanted to test whether the regression relations were identical in all four seasons (equal intercepts as well as slopes). Give just the \mathbf{C} matrix in $H_{0}: \mathbf{C} \boldsymbol{\beta}=\mathbf{0}$.

Galton:Temporary Items:q5.sas Page 1 of 1 Wednesday, June 20, 2001 Printed: 9:02:52 PM

```
/* q5.sas */
options linesize=79 pagesize=500;
title 'Quiz 5 Job';
data portrait;
    infile 'brandpref.dat';
    input liking moist sweet;
proc glm;
    model liking = moist sweet;
    estimate 'Xh' intercept 1 moist 5 sweet 4;
/*
                    The GLM Procedure
Number of observations 16
                        Quiz 5 Job
                The GLM Procedure
```

Dependent Variable: liking

| | Sum of | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| Source | DF | Squares | Mean Square | F Value | Pr $>$ F |
| Model | 2 | 1872.700000 | 936.350000 | 129.08 | $<.0001$ |
| Error | 13 | 94.300000 | 7.253846 | | |
| Corrected Total | 15 | 1967.000000 | | | |

		Standard		
Parameter	Estimate	Error	t Value	Pr $>\|t\|$
Xh	77.2750000	1.12668677	68.59	$<.0001$

	Estimate	Standard Error	t Value	Pr $>\|t\|$
Parameter				
Intercept	37.65000000	2.99610324	12.57	$<.0001$
moist	4.42500000	0.30111971	14.70	$<.0001$
sweet	4.37500000	0.67332413	6.50	$<.0001$

Jerry's Answers to Quiz 5
(1)

$$
\Delta^{2}\{\text { predmean }\}=\frac{M S E}{2}+s^{2}\left\{\frac{1}{\psi}\right\}=\frac{7.25}{2}+1.1267^{2}=4.89
$$

and $\hat{Y_{2}} \pm A(1-\alpha / 2 ; n-8) \Delta$ \{prodmean $\}=77.275 \pm(2.16)(2.21)$

$$
=77.275 \pm 4.774=(72.501,82.049)
$$

(2) a)

SEASON	$E(Y)$
WINTER	$\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{5}\right) x_{1}$
SPRING	$\left(\beta_{0}+\beta_{3}\right)+\left(\beta_{1}+B_{1}\right) x_{1}$
$F H C C$	$\left(B_{2}+\beta_{4}\right)+\left(\beta_{1}+B_{7}\right) x_{1}$
SUMMER	$\beta_{0} \quad B_{1} x_{1}$

b)

$$
c=\left[\begin{array}{cccccccc}
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1
\end{array}\right]
$$

c)

$$
\sim=\left[\begin{array}{llllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

