STA 302 Summer 2001 Quiz Two

- 1. (5 Points) For the simple regression model $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$,
 - (a) What is the expected value of Y_i ? Showing work on this part is optional.
 - (b) What is the expected value of $\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$? Show your work.
 - (c) Use the work you have just done to show that b_1 is unbiased. Show your work. You do not need to prove

$$b_1 = \frac{\sum_{i=1}^n (x_i - \overline{x})(Y_i - \overline{Y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$

- 2. The printout below is based on the Grade Point Average data from your homework, in which an attempt was made to predict first-year university grade point average from score on a test.
 - (a) (1 Point) When the test score increases by *two* points, estimated GPA increases by how much? The answer is a number.
 - (b) (1 Point) What proportion of the variation in GPA is explained by test score? The answer is a number
 - (c) (3 Points) Your boss, who has a short temper and has never had a statistics course, asks you to interpret the *t*-test for the intercept on the printout. Reply, *in everday language*. Remember, using terms like "null hypothesis" could get you fired, and will certainly lose you marks on this question, even if your answer is otherwise correct.

Dependent Variable: gpa

Analysis of Variance

Source		DF	Sum Squar	of es	Me Squa	an re 1	F Value	Pr > F	
Model Error		1 18	6.433 3.406	73	6.433 0.189	73 24	34.00	<.0001	
Corrected Total		19	9.840	00					
Root MSE Dependent Mea Coeff Var			0.435 2.500 17.400	01 R- 00 Ad 57	-Square dj R-Sq	0.0	0.6538 0.6346		
		Р	arameter E	stimate	S				
Variable DF		Parameter Estimate		Standard Error t Va		Value	Pr >	t	
Interce test	ot 1 1	-1. 0.	69956 83991	0.720 0.144	678 405	-2.34 5.83	0.(<.()311)001	

Jerry's Answers to Guiz 2

 $Ia) E(Y_i) = \beta_i + \beta_i x_i$ $b) E(\overline{Y}) = E(\frac{1}{n}\sum_{i=1}^{n}Y_{i}) = \frac{1}{n}\sum_{i=1}^{n}E(Y_{i})$ $=\frac{1}{n}\sum_{i=1}^{n}\left(\beta_{0}+\beta_{i}x_{i}\right)=\frac{1}{n}\left[n\beta_{0}+\beta_{i}\sum_{i=1}^{n}x_{i}\right]=\beta_{0}+\beta_{i}\overline{x}$ c) $E(b_{i}) = E\left[\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(x_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}\right]$ $= \sum_{i=1}^{n} (x_i - \overline{x}) E[(Y_i - \overline{y})] \qquad \sum_{i=1}^{n} (x_i - \overline{x}) (E(Y_i) - E(\overline{y}))$ $\sum_{i=1}^{2} (x_i - \bar{x})^2 = \sum_{i=1}^{2} (x_i - \bar{x})^2$ $= \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (\beta_0 + \beta_1 x_i - \beta_0 - \beta_1 \overline{x})}{\sum_{i=1}^{n} (x_i - \overline{x})^2} = \beta_1 \frac{\sum_{i=1}^{n} (x_i - \overline{x}) (x_i - \overline{x})}{\sum_{i=1}^{n} (x_i - \overline{x})^2}$ = B [UNBIASED] 2a) 2×0.83991= (1.68 b) (6538 c) It is meaningless. The intercept is estimated GPA for students who got gero on the test, and litely there were no such students in the data.