Quiz 3

Due: Thursday October 1, 2020 6:40 PM (EDT)

Submit your assignment

After you have completed the assignment, please save, scan, or take photos of your work and upload your files to the questions below. Crowdmark accepts PDF, JPG, and PNG file formats.

Q1 (3 points)

Let the matrix $\mathbf{A}=\left(\begin{array}{rrr}4 & 0 & -2 \\ 0 & 5 & 1 \\ -2 & 1 & 3\end{array}\right)$. Using R, calculate the eigenvalues of \mathbf{A}^{-1}.
Capture an image of your complete R input and output. Circle or highlight your answer. It does not matter how you capture the image. Even a photo of your computer screen is okay if it's legible.

Q2 (3 points)

Let the $p \times p$ matrix \mathbf{A} be positive semi-definite, meaning $\mathbf{v}^{\prime} \mathbf{A v} \geq 0$ for any $p \times 1$ vector \mathbf{v}. Let \mathbf{B} be another $p \times p$ matrix. Show that $\mathbf{B}^{\prime} \mathbf{A B}$ is also positive semi-definite.

Q3 (4 points)

Let the random vector \mathbf{x} have expected value $\boldsymbol{\mu}$ and variance-covariance matrix $\boldsymbol{\Sigma}$. Let $\mathbf{y}=\left[y_{j}\right]=\mathbf{C}^{\prime} \mathbf{x}$, where the columns of \mathbf{C} are the eigenvectors of $\boldsymbol{\Sigma}$. Prove $\operatorname{Cov}\left(y_{i}, y_{j}\right)=0$ for $i \neq j$.

Quiz 3
(1)
$\begin{array}{r}A= \\ +\operatorname{rbind}(c(4, \\ c(0, \\ c(-2) \\ \hline\end{array}$
> \# There are two good ways to do it.
) eigen(solve(A)) \$values
[1] 0.78867510 .21132490 .1666667
1 1/oigen(A)svalues
[1] 0.16666670 .21132490 .7886751
MUST write this
(2) $v^{\prime} B^{\prime} A B v=\underset{\sim P_{X I}}{\left.\underset{\sim}{B})^{B}\right)^{\prime} A v}=x^{\prime} A x \geq 0$
because A is positive semi-definits.
(3)

$$
\begin{aligned}
& \cos (y)=C_{0 N}\left(C^{\prime} x\right)=C^{\prime} \operatorname{cov}(x) C=C^{\prime} \Sigma C \\
&=\underbrace{C^{\prime} C}_{I} D \underbrace{C C^{\prime} C}_{I}=D, \text { a diagonal } \\
& \text { matrix },
\end{aligned}
$$

and the result follows (because all the off-dagonal elements of this covariance matrix are zero).

