STA302: Regression Analysis

See last slide for copyright
information

Statistics

- Objective: To draw reasonable conclusions from noisy numerical data
- Entry point: Study relationships between variables

Data File

- Rows are cases. There are n cases.
- Columns are variables. A variable is a piece of information that is recorded for every case.

1	2	2	0	78.0	65	80	39	English	Female	3	3	1
2	2	6	2	66.0	54	75	57	English	Female	3	3	1
3	2	4	4	80.2	77	70	62	English	Male	5	6	1
4	2	5	2	81.7	80	67	76	English	Female	2	2	1
5	2	4	4	86.8	87	80	86	English	Male	5	5	1
6	2	3	1	76.7	53	75	60	English	Male	3	3	1
7	2	3	2	85.8	86	81	54	Other	Female	2	2	1
8	2	4	3	73.0	75	77	17	English	Male	4	5	1
9	2	6	2	72.3	63	60	2	English	Male	4	4	1
10	2	8	6	90.3	87	88	76	English	Male	4	4	1
11	2	8	3	-	-	-	60	English	Male	1	2	1
12	2	6	4	-	-	-	61	Other	Female	1	1	1
13	.	.	.	87.2	84	83	54	English	Male	3	3	1
14	2	2	5	91.0	90	91	84	English	Male	5	5	1
15	2	3	1	72.8	53	74	-	English	Female	3	3	1
16	.	.	.	80.7	72	84	14	English	Male	3	3	1
17	2	5	0	82.5	82	85	75	Other	Female	2	2	1
18	2	4	6	91.5	95	81	94	English	Female	3	3	1
19	2	3	2	78.3	77	74	60	English	Female	3	3	1
20	.	.	.	74.5	0	85	-	English	Male	4	4	1
21	2	3	3	80.7	71	78	53	other	Female	1	3	1
22	2	5	3	88.3	80	85	63	English	Female	3	3	1
23	2	4	2	76.8	82	64	82	other	Female	2	2	1

Skipping \qquad

| 570 | 2 | 5 | 4 | 84.8 | 88 | 68 | 80 | English | Male | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 571 | 2 | 4 | 3 | 78.3 | 83 | 84 | 56 | English | Male | 4 | 2 | 1 |
| 572 | 2 | 6 | 3 | 88.3 | 81 | 90 | 70 | English | Female | 5 | 5 | 1 |
| 573 | 2 | 3 | 1 | - | - | - | - | English | Male | 3 | 3 | 1 |
| 574 | 2 | 5 | 9 | 77.0 | 73 | 79 | 60 | English | Female | 2 | 2 | 1 |
| 575 | - | - | - | 78.7 | 80 | 73 | - | English | Female | 6 | 3 | 1 |
| 576 | 2 | 5 | 2 | 80.7 | 80 | 70 | 50 | Other | Male | 1 | 1 | 1 |
| 577 | 2 | 4 | 2 | 80.7 | 56 | 81 | 50 | English | Female | 2 | 2 | 1 |
| 578 | 2 | 4 | 3 | -7 | 0 | - | 78 | Other | Female | 4 | 4 | 1 |
| 579 | 1 | 6 | 1 | 82.2 | 80 | 86 | 61 | English | Female | 2 | 2 | 4 |

Variables can be

- Independent or Predictor
- Dependent or Response (predicted)

Simple regression and correlation

- Simple means one independent variable.
- Dependent variable quantitative.
- Independent variable usually quantitative too.

Simple regression and correlation

High School GPA

78
87
86
77

University GPA
86
73
89
81
67
\ldots

Scatterplot

Least squares line

Correlation between variables

- $r=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}}$
is an estimate of

$$
\rho=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

Correlation coefficient r

- $-1 \leq r \leq 1$
- $r=+1$ indicates a perfect positive linear relationship. All the points are exactly on a line with a positive slope.
- $r=-1$ indicates a perfect negative linear relationship. All the points are exactly on a line with a negative slope.
- $r=0$ means no linear relationship (curve possible). Slope of least squares line $=0$
- $r^{2}=$ proportion of variation explained

$$
r=0.004
$$

$$
r=0.112
$$

$$
r=0.368
$$

$$
r=0.547
$$

$$
r=0.733
$$

$$
r=-0.822
$$

Correlation of C5 and C9 $=-0.822$

$$
r=0.025
$$

$$
r=-0.811
$$

Why $-1 \leq r \leq 1 ?$

- $r=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}}$
- $\begin{aligned} \cos (\theta) & =\frac{\mathbf{a}^{\prime} \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} \\ & =\frac{\mathbf{a}^{\prime} \mathbf{b}}{\sqrt{\mathbf{a}^{\prime} \mathbf{a} \mathbf{b}^{\prime} \mathbf{b}}}\end{aligned}$

A Statistical Model

Independently for $i=1, \ldots, n$, let $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$, where x_{1}, \ldots, x_{n} are observed, known constants $\epsilon_{1}, \ldots, \epsilon_{n}$ are independent $N\left(0, \sigma^{2}\right)$ random variables β_{0}, β_{1} and σ^{2} are unknown constants with $\sigma^{2}>0$.

One Independent Variable at a Time

 Can Produce Misleading Results- The standard elementary methods all have a single independent variable (at most), so they should be used with caution in practice.
- Example: Artificial and extreme, to make a point:
- Suppose the correlation between Age and Strength is $r=-0.96$

Age and Strength

Need multiple regression

Multiple regression in scalar form

For $i=1, \ldots, n$, let $y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{k} x_{i k}+\epsilon_{i}$, where $x_{i j}$ are observed, known constants $\epsilon_{1}, \ldots, \epsilon_{n}$ are independent $N\left(0, \sigma^{2}\right)$ random variables β_{j} and σ^{2} are unknown constants with $\sigma^{2}>0$.

Multiple regression in matrix form

$$
\begin{aligned}
& \mathbf{y}=\boldsymbol{X} \quad \boldsymbol{\beta}+\boldsymbol{\epsilon} \\
& \left(\begin{array}{c}
y_{1} \\
y_{2} \\
y_{3} \\
\vdots \\
y_{n}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 14.2 & \cdots & 1 \\
1 & 11.9 & \cdots & 0 \\
1 & 3.7 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
1 & 6.2 & \cdots & 1
\end{array}\right) \quad\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{k}
\end{array}\right)+\left(\begin{array}{c}
\epsilon_{1} \\
\epsilon_{2} \\
\epsilon_{3} \\
\vdots \\
\epsilon_{n}
\end{array}\right)
\end{aligned}
$$

where
\mathbf{X} is an $n \times(k+1)$ matrix of observed constants
$\boldsymbol{\beta}$ is a $(k+1) \times 1$ matrix of unknown constants
$\boldsymbol{\epsilon}$ is multivariate normal. Write $\boldsymbol{\epsilon} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)$
σ^{2} is an unknown constant

So we need

- Matrix algebra
- Random vectors, especially multivariate normal
- Software to do the computation

Reading

- In Rencher and Schaalje's Linear Models In Statistics.
- Chapter 6 (only 10 pages).
- Overview using simple regression: One explanatory variable.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. These Powerpoint slides are available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/302f20

