Random Vectors ${ }^{1}$ STA 302 Fall 2020

${ }^{1}$ See last slide for copyright information.

Random Vectors and Matrices
 See Chapter 3 of Linear models in statistics for more detail.

- A random matrix is just a matrix of random variables.
- Their joint probability distribution is the distribution of the random matrix.
- Random matrices with just one column (say, $p \times 1$) may be called random vectors.

Expected Value

The expected value of a random matrix is defined as the matrix of expected values. Denoting the $p \times c$ random matrix \mathbf{X} by $\left[x_{i, j}\right]$,

$$
E(\mathbf{X})=\left[E\left(x_{i, j}\right)\right]
$$

Immediately we have natural properties like

If the random matrices \mathbf{X} and \mathbf{Y} are the same size,

$$
\begin{aligned}
E(\mathbf{X}+\mathbf{Y}) & =E\left(\left[x_{i, j}+y_{i, j}\right]\right) \\
& =\left[E\left(x_{i, j}+y_{i, j}\right)\right] \\
& =\left[E\left(x_{i, j}\right)+E\left(y_{i, j}\right)\right] \\
& =\left[E\left(x_{i, j}\right)\right]+\left[E\left(y_{i, j}\right)\right] \\
& =E(\mathbf{X})+E(\mathbf{Y})
\end{aligned}
$$

Moving a constant matrix through the expected value

 signLet $\mathbf{A}=\left[a_{i, j}\right]$ be an $r \times p$ matrix of constants, while \mathbf{X} is still a $p \times c$ random matrix. Then

$$
\begin{aligned}
E(\mathbf{A X}) & =E\left(\left[\sum_{k=1}^{p} a_{i, k} x_{k, j}\right]\right) \\
& =\left[E\left(\sum_{k=1}^{p} a_{i, k} x_{k, j}\right)\right] \\
& =\left[\sum_{k=1}^{p} a_{i, k} E\left(x_{k, j}\right)\right] \\
& =\mathbf{A} E(\mathbf{X}) .
\end{aligned}
$$

Similar calculations yield $E(\mathbf{A X B})=\mathbf{A} E(\mathbf{X}) \mathbf{B}$.

Variance-Covariance Matrices

Let \mathbf{x} be a $p \times 1$ random vector with $E(\mathbf{x})=\boldsymbol{\mu}$. The variance-covariance matrix of \mathbf{x} (sometimes just called the covariance matrix), denoted by $\operatorname{cov}(\mathbf{x})$, is defined as

$$
\operatorname{cov}(\mathbf{x})=E\left\{(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\prime}\right\} .
$$

$\operatorname{cov}(\mathrm{x})=E\left\{(\mathrm{x}-\mu)(\mathrm{x}-\mu)^{\prime}\right\}$

$$
\begin{aligned}
\operatorname{cov}(\mathbf{x}) & =E\left\{\left(\begin{array}{l}
x_{1}-\mu_{1} \\
x_{2}-\mu_{2} \\
x_{3}-\mu_{3}
\end{array}\right)\left(\begin{array}{lll}
x_{1}-\mu_{1} & x_{2}-\mu_{2} & x_{3}-\mu_{3}
\end{array}\right)\right\} \\
& =E\left\{\left(\begin{array}{lll}
\left(x_{1}-\mu_{1}\right)^{2} & \left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right) & \left(x_{1}-\mu_{1}\right)\left(x_{3}-\mu_{3}\right) \\
\left(x_{2}-\mu_{2}\right)\left(x_{1}-\mu_{1}\right) & \left(x_{2}-\mu_{2}\right)^{2} & \left(x_{2}-\mu_{2}\right)\left(x_{3}-\mu_{3}\right) \\
\left(x_{3}-\mu_{3}\right)\left(x_{1}-\mu_{1}\right) & \left(x_{3}-\mu_{3}\right)\left(x_{2}-\mu_{2}\right) & \left(x_{3}-\mu_{3}\right)^{2}
\end{array}\right)\right\} \\
& =\left(\begin{array}{lll}
E\left\{\left(x_{1}-\mu_{1}\right)^{2}\right\} & E\left\{\left(x_{1}-\mu_{1}\right)\left(x_{2}-\mu_{2}\right)\right\} & E\left\{\left(x_{1}-\mu_{1}\right)\left(x_{3}-\mu_{3}\right)\right\} \\
E\left\{\left(x_{2}-\mu_{2}\right)\left(x_{1}-\mu_{1}\right)\right\} & E\left\{\left(x_{2}-\mu_{2}\right)^{2}\right\} & E\left\{\left(x_{2}-\mu_{2}\right)\left(x_{3}-\mu_{3}\right)\right\} \\
E\left\{\left(x_{3}-\mu_{3}\right)\left(x_{1}-\mu_{1}\right)\right\} & E\left\{\left(x_{3}-\mu_{3}\right)\left(x_{2}-\mu_{2}\right)\right\} & E\left\{\left(x_{3}-\mu_{3}\right)^{2}\right\}
\end{array}\right. \\
& =\left(\begin{array}{lll}
\operatorname{Var}\left(x_{1}\right) & \operatorname{Cov}\left(x_{1}, x_{2}\right) & \operatorname{Cov}\left(x_{1}, x_{3}\right) \\
\operatorname{Cov}\left(x_{1}, x_{2}\right) & \operatorname{Var}\left(x_{2}\right) & \operatorname{Cov}\left(x_{2}, x_{3}\right) \\
\operatorname{Cov}\left(x_{1}, x_{3}\right) & \operatorname{Cov}\left(x_{2}, x_{3}\right) & \operatorname{Var}\left(x_{3}\right)
\end{array}\right) .
\end{aligned}
$$

So, the covariance matrix $\operatorname{cov}(\mathbf{x})$ is a $p \times p$ symmetric matrix with variances on the main diagonal and covariances on the off-diagonals.

Analogous to $\operatorname{Var}(a x)=a^{2} \operatorname{Var}(x)$

Let \mathbf{x} be a $p \times 1$ random vector with $E(\mathbf{x})=\boldsymbol{\mu}$ and $\operatorname{cov}(\mathbf{x})=\boldsymbol{\Sigma}$, while $\mathbf{A}=\left[a_{i, j}\right]$ is an $r \times p$ matrix of constants. Then

$$
\begin{aligned}
\operatorname{cov}(\mathbf{A x}) & =E\left\{(\mathbf{A} \mathbf{x}-\mathbf{A} \boldsymbol{\mu})(\mathbf{A} \mathbf{x}-\mathbf{A} \boldsymbol{\mu})^{\prime}\right\} \\
& =E\left\{\mathbf{A}(\mathbf{x}-\boldsymbol{\mu})(\mathbf{A}(\mathbf{x}-\boldsymbol{\mu}))^{\prime}\right\} \\
& =E\left\{\mathbf{A}(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\prime} \mathbf{A}^{\prime}\right\} \\
& =\mathbf{A} E\left\{(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\prime}\right\} \mathbf{A}^{\prime} \\
& =\mathbf{A} \operatorname{cov}(\mathbf{x}) \mathbf{A}^{\prime} \\
& =\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}
\end{aligned}
$$

Positive definite is a natural assumption

- $\operatorname{cov}(\mathbf{x})=\boldsymbol{\Sigma}$
- $\boldsymbol{\Sigma}$ positive definite means $\mathbf{a}^{\prime} \boldsymbol{\Sigma} \mathbf{a}>0$. for all $\mathbf{a} \neq \mathbf{0}$.
- $y=\mathbf{a}^{\prime} \mathbf{x}=a_{1} x_{1}+\cdots+a_{p} x_{p}$ is a scalar random variable.
- $\operatorname{Var}(y)=\mathbf{a}^{\prime} \operatorname{cov}(\mathbf{x}) \mathbf{a}=\mathbf{a}^{\prime} \boldsymbol{\Sigma} \mathbf{a}$
- $\boldsymbol{\Sigma}$ positive definite just says that the variance of any (non-trivial) linear combination is positive.
- This is often what you want (but not always).

Matrix of covariances between two random vectors

Let \mathbf{x} be a $p \times 1$ random vector with $E(\mathbf{x})=\mu_{x}$ and let \mathbf{y} be a $q \times 1$ random vector with $E(\mathbf{y})=\boldsymbol{\mu}_{y}$.
The $p \times q$ matrix of covariances between the elements of \mathbf{x} and the elements of \mathbf{y} is

$$
\operatorname{cov}(\mathbf{x}, \mathbf{y})=E\left\{\left(\mathbf{x}-\boldsymbol{\mu}_{x}\right)\left(\mathbf{y}-\boldsymbol{\mu}_{y}\right)^{\prime}\right\}
$$

Adding a constant has no effect

On variances and covariances

It's clear from the definitions

$$
\begin{aligned}
& \text { - } \operatorname{cov}(\mathbf{x})=E\left\{(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\prime}\right\} \\
& \text { - } \operatorname{cov}(\mathbf{x}, \mathbf{y})=E\left\{\left(\mathbf{x}-\boldsymbol{\mu}_{x}\right)\left(\mathbf{y}-\boldsymbol{\mu}_{y}\right)^{\prime}\right\}
\end{aligned}
$$

That

- $\operatorname{cov}(\mathbf{x}+\mathbf{a})=\operatorname{cov}(\mathbf{x})$
- $\operatorname{cov}(\mathbf{x}+\mathbf{a}, \mathbf{y}+\mathbf{b})=\operatorname{cov}(\mathbf{x}, \mathbf{y})$

For example, $E(\mathbf{x}+\mathbf{a})=\boldsymbol{\mu}+\mathbf{a}$, so

$$
\begin{aligned}
\operatorname{cov}(\mathbf{x}+\mathbf{a}) & =E\left\{(\mathbf{x}+\mathbf{a}-(\boldsymbol{\mu}+\mathbf{a}))(\mathbf{x}+\mathbf{a}-(\boldsymbol{\mu}+\mathbf{a}))^{\prime}\right\} \\
& =E\left\{(\mathbf{x}-\boldsymbol{\mu})(\mathbf{x}-\boldsymbol{\mu})^{\prime}\right\} \\
& =\operatorname{cov}(\mathbf{x})
\end{aligned}
$$

Here's a useful formula

Let $E(\mathbf{y})=\boldsymbol{\mu}, \operatorname{cov}(\mathbf{y})=\boldsymbol{\Sigma}$, and let \mathbf{A} and \mathbf{B} be matrices of constants. Then

$$
\operatorname{cov}(\mathbf{A y}, \mathbf{B y})=\mathbf{A} \mathbf{\Sigma} \mathbf{B}^{\prime}
$$

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IAT}_{E} X$ source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/302f20

