Omitted Variables and Instrumental Variables ${ }^{1}$ STA305 Fall 2020

${ }^{1}$ See last slide for copyright information.

Overview

(1) Omitted Variables
(2) Instrumental Variables

Omitted Variables: A Practical Issue

- If you fit a regression model and then fit another model with additional x variables, anything can happen.
- $\widehat{\beta}_{j}$ values will change, and can even reverse sign.
- Tests that were significant can become non-significant.
- Tests that were non-significant can become significant.
- Tests that were significant in one direction can become significant in the other direction.
- This happens when the additional variables are related to y and also to the x variables that are already in the model.
- If your only interest is in prediction, who cares?
- If you are interested in the meaning of the results, it's a serious issue.
- Now we will examine this on a technical level.

The fixed x regression model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\cdots+\beta_{k} x_{i, k}+\epsilon_{i}, \text { with } \epsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

- $x_{i, j}$ fixed constants is unrealistic.
- Think of the model as conditional given the random vector $\mathcal{X}_{i}=\mathbf{x}_{i}$.
- All the expected values and probabilities in this course so far are conditional expected values and conditional probabilities.

Independence of ϵ_{i} and \mathbf{x}_{i}

- The statement $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$ is a statement about the conditional distribution of ϵ_{i} given \mathbf{x}_{i}.
- It says the density of ϵ_{i} given \mathbf{x}_{i} does not depend on \mathbf{x}_{i}.
- For convenience, assume \mathbf{x}_{i} has a (joint) density.

$$
\begin{aligned}
& f_{\epsilon \mid \mathbf{x}}(\epsilon \mid \mathbf{x}) \\
\Rightarrow \quad & =f_{\epsilon}(\epsilon) \\
\Rightarrow \quad & \frac{f_{\epsilon, \mathbf{x}}(\epsilon, \mathbf{x})}{f_{\mathbf{x}}(\mathbf{x})}=f_{\epsilon}(\epsilon) \\
\Rightarrow \quad f_{\epsilon, \mathbf{x}}(\epsilon, \mathbf{x}) & =f_{\mathbf{x}}(\mathbf{x}) f_{\epsilon}(\epsilon)
\end{aligned}
$$

Independence!

The fixed x regression model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\cdots+\beta_{k} x_{i, p-1}+\epsilon_{i}, \text { with } \epsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

- If viewed as conditional on \mathbf{x}_{i}, this model implies independence of ϵ_{i} and \mathbf{x}_{i}, because the conditional distribution of ϵ_{i} given \mathbf{x}_{i} does not depend on \mathbf{x}_{i}.
- What is ϵ_{i} ? Everything else that affects y_{i}.
- So the usual model says that if the independent varables are random, they have zero covariance with all other variables that are related to y_{i}, but are not included in the model.
- For observational data (no random assignment), this assumption is almost always violated.
- Does it matter?

Example

Suppose that the explanatory variables x_{2} and x_{3} have an impact on y and are correlated with x_{1}, but they are not part of the data set. The values of the response variable are generated as follows:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\beta_{2} x_{i, 3}+\epsilon_{i}
$$

independently for $i=1, \ldots, n$, where $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$. The explanatory variables are random, with expected value and variance-covariance matrix
$E\left(\begin{array}{l}x_{i, 1} \\ x_{i, 2} \\ x_{i, 3}\end{array}\right)=\left(\begin{array}{l}\mu_{1} \\ \mu_{2} \\ \mu_{3}\end{array}\right) \quad$ and $\operatorname{cov}\left(\begin{array}{l}x_{i, 1} \\ x_{i, 2} \\ x_{i, 3}\end{array}\right)=\left(\begin{array}{lll}\phi_{11} & \phi_{12} & \phi_{13} \\ & \phi_{22} & \phi_{23} \\ & & \phi_{33}\end{array}\right)$,
and ϵ_{i} is statistically independent of $x_{i, 1}, x_{i, 2}$ and $x_{i, 3}$.

Absorb x_{2} and x_{3}

Since x_{2} and x_{3} are not observed, they are absorbed by the intercept and error term.

$$
\begin{aligned}
y_{i} & =\beta_{0}+\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\beta_{2} x_{i, 3}+\epsilon_{i} \\
& =\left(\beta_{0}+\beta_{2} \mu_{2}+\beta_{3} \mu_{3}\right)+\beta_{1} x_{i, 1}+\left(\beta_{2} x_{i, 2}+\beta_{3} x_{i, 3}-\beta_{2} \mu_{2}-\beta_{3} \mu_{3}+\epsilon_{i}\right) \\
& =\beta_{0}^{*}+\beta_{1} x_{i, 1}+\epsilon_{i}^{*} .
\end{aligned}
$$

And,

$$
\operatorname{Cov}\left(x_{i, 1}, \epsilon_{i}^{*}\right)=\beta_{2} \phi_{12}+\beta_{3} \phi_{13} \neq 0
$$

The "True" Model

Almost always closer to the truth than the usual model, for observational data

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}
$$

where $E\left(x_{i}\right)=\mu_{x}, \operatorname{Var}\left(x_{i}\right)=\sigma_{x}^{2}, E\left(\epsilon_{i}\right)=0, \operatorname{Var}\left(\epsilon_{i}\right)=\sigma_{\epsilon}^{2}$, and $\operatorname{Cov}\left(x_{i}, \epsilon_{i}\right)=c$.

Under this model,

$$
\sigma_{x y}=\operatorname{Cov}\left(x_{i}, y_{i}\right)=\operatorname{Cov}\left(x_{i}, \beta_{0}+\beta_{1} x_{i}+\epsilon_{i}\right)=\beta_{1} \sigma_{x}^{2}+c
$$

Estimate β_{1} as usual

Recalling $\operatorname{Cov}\left(x_{i}, y_{i}\right)=\beta_{1} \sigma_{x}^{2}+c$

$$
\begin{aligned}
\widehat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
& =\frac{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \\
& =\frac{\widehat{\sigma}_{x y}}{\widehat{\sigma}_{x}^{2}} \\
& \xrightarrow{p} \frac{\sigma_{x y}}{\sigma_{x}^{2}} \text { as } n \rightarrow \infty \\
& =\frac{\beta_{1} \sigma_{x}^{2}+c}{\sigma_{x}^{2}} \\
& =\beta_{1}+\frac{c}{\sigma_{x}^{2}} \neq \beta_{1} \text { unless } c=0
\end{aligned}
$$

$\widehat{\beta}_{1} \xrightarrow{p} \beta_{1}+\frac{c}{\sigma_{x}^{2}}$

- $\widehat{\beta}_{1}$ is inconsistent, meaning it approaches the wrong target as $n \rightarrow \infty$.
- It could be almost anything, depending on the value of c, the covariance between x_{i} and ϵ_{i}.
- The only time $\widehat{\beta}_{1}$ behaves properly is when $c=0$.
- Test $H_{0}: \beta_{1}=0$, and the probability of Type I error goes to one as $n \rightarrow \infty$.
- What if $\beta_{1}<0$ but $\beta_{1}+\frac{c}{\sigma_{x}^{2}}>0$, and you test $H_{0}: \beta_{1}=0$?

All this applies to multiple regression

Of course

When a regression model fails to include all the explanatory variables that contribute to the response variable, and those omitted explanatory variables have non-zero covariance with variables that are in the model, the regression coefficients are biased and inconsistent.

Correlation-Causation

- The problem of omitted variables is the technical version of the correlation-causation issue.
- The omitted variables are "confounding" variables.
- With random assignment and good procedure, x and ϵ have zero covariance.
- But random assignment is not always possible.
- Most applications of regression to observational data provide very poor information about the regression coefficients.
- Is bad information better than no information at all?

How about another estimation method?
 Other than ordinary least squares

- Can any other method be successful?
- This is a very practical question, because almost all regressions with observed (as opposed to manipulated) independent variables have the disease.

For simplicity, assume normality

$y_{i}=\beta_{0}+\beta_{1} y_{i}+\epsilon_{i}$

- Assume $\left(x_{i}, \epsilon_{i}\right)$ are bivariate normal.
- This makes $\left(x_{i}, y_{i}\right)$ bivariate normal.
- $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right) \stackrel{i . i . d .}{\sim} N_{2}(\mathbf{m}, \mathbf{V})$, where

$$
\mathbf{m}=\binom{m_{1}}{m_{2}}=\binom{\mu_{x}}{\beta_{0}+\beta_{1} \mu_{x}}
$$

and

$$
\mathbf{V}=\left(\begin{array}{ll}
v_{11} & v_{12} \\
& v_{22}
\end{array}\right)=\left(\begin{array}{cc}
\sigma_{x}^{2} & \beta_{1} \sigma_{x}^{2}+c \\
& \beta_{1}^{2} \sigma_{x}^{2}+2 \beta_{1} c+\sigma_{\epsilon}^{2}
\end{array}\right)
$$

- All you can ever learn from the data are the approximate values of \mathbf{m} and \mathbf{V}.
- Even if you knew \mathbf{m} and \mathbf{V} exactly, could you know β_{1} ?

Five equations in six unknowns

The parameter is $\theta=\left(\mu_{x}, \sigma_{x}^{2}, \sigma_{\epsilon}^{2}, c, \beta_{0}, \beta_{1}\right)$. The distribution of the data is determined by
$\binom{m_{1}}{m_{2}}=\binom{\mu_{x}}{\beta_{0}+\beta_{1} \mu_{x}}$ and $\left(\begin{array}{cc}v_{11} & v_{12} \\ & v_{22}\end{array}\right)=\left(\begin{array}{cc}\sigma_{x}^{2} & \beta_{1} \sigma_{x}^{2}+c \\ & \beta_{1}^{2} \sigma_{x}^{2}+2 \beta_{1} c+\sigma_{\epsilon}^{2}\end{array}\right)$

- $\mu_{x}=m_{1}$ and $\sigma_{x}^{2}=v_{11}$.
- The remaining 3 equations in 4 unknowns have infinitely many solutions.
- So infinitely many sets of parameter values yield the same probability distribution of the sample data.
- How could you decide which one is correct based on the sample data?
- The problem is fatal, if all you have is this data set.
- Ultimately the solution is better data - different data.

Instrumental Variables (Wright, 1928)

A partial solution

- An instrumental variable is a variable that is correlated with an explanatory variable, but is not correlated with any error terms and has no direct effect on the response variable.
- Usually, the instrumental variable influences the explanatory variable.
- An instrumental variable is often not the main focus of attention; it's just a tool.

A Simple Example

What is the contribution of income to credit card debt?

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}
$$

where $E\left(x_{i}\right)=\mu_{x}, \operatorname{Var}\left(x_{i}\right)=\sigma_{x}^{2}, E\left(\epsilon_{i}\right)=0, \operatorname{Var}\left(\epsilon_{i}\right)=\sigma_{\epsilon}^{2}$, and $\operatorname{Cov}\left(x_{i}, \epsilon_{i}\right)=c$.

A path diagram

Again, $y_{i}=\alpha+\beta x_{i}+\epsilon_{i}$, where $E\left(x_{i}\right)=\mu, \operatorname{Var}\left(x_{i}\right)=\sigma_{x}^{2}$, $E\left(\epsilon_{i}\right)=0, \operatorname{Var}\left(\epsilon_{i}\right)=\sigma_{\epsilon}^{2}$, and $\operatorname{Cov}\left(x_{i}, \epsilon_{i}\right)=c$.

Least squares estimate of β is inconsistent, and so is every other possible estimate. If the data are normal.

Add an instrumental variable

x is income, y is credit card debt.
Focus the study on real estate agents in many cities. Include median price of resale home w_{i}.

$$
\begin{aligned}
x_{i} & =\alpha_{1}+\beta_{1} w_{i}+\epsilon_{i 1} \\
y_{i} & =\alpha_{2}+\beta_{2} x_{i}+\epsilon_{i 2}
\end{aligned}
$$

Main interest is in β_{2}.

Base estimation and inference on the covariance matrix

 of $\left(w_{i}, x_{i}, y_{i}\right)$: Call it $V=\left[v_{i j}\right]$From $x_{i}=\alpha_{1}+\beta_{1} w_{i}+\epsilon_{i 1}$ and $y_{i}=\alpha_{2}+\beta_{2} x_{i}+\epsilon_{i 2}$,

$$
\mathbf{V}=
$$

The remaining 5 equations in 5 unknowns have unique solutions too.

A close look

The $v_{i j}$ are elements of the covariance matrix of the observable data.

$$
\beta_{2}=\frac{v_{13}}{v_{12}}=\frac{\beta_{1} \beta_{2} \sigma_{w}^{2}}{\beta_{1} \sigma_{w}^{2}}=\frac{\operatorname{Cov}(W, Y)}{\operatorname{Cov}(W, X)}
$$

- $\widehat{v}_{i j}$ are sample variances and covariances.
- $\widehat{v}_{i j} \xrightarrow{p} v_{i j}$.
- It is safe to assume $\beta_{1} \neq 0$.
- Because it's the connection between real estate prices and the income of real estate agents.
- By continuous mapping, $\frac{\widehat{v}_{13}}{\widehat{v}_{12}} \xrightarrow{p} \frac{v_{13}}{v_{12}}=\beta_{2}$.
- That is, $\frac{\widehat{v}_{13}}{\widehat{v}_{12}}$ is a consistent estimate of β_{2}.
- $H_{0}: \beta_{2}=0$ is true if and only if $v_{13}=0$.
- Test $H_{0}: v_{13}=0$ by standard methods. help(cor.test)

Comments

- Good instrumental variables are not easy to find.
- They will not just happen to be in the data set, except by a miracle.
- They really have to come from another universe, but still have a strong and clear connection to the explanatory variables.
- Wright's original example was tax policy for cooking oil.
- Econometricians are good at this.
- Time series applications are common.
- Instrumental variables can help with measurement error in the explanatory variables too.
- The usual advice is at least one instrumental variable for each explanatory variable.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/302f20

