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Reading in In Rencher and Schaalje’s Linear Models In
Statistics

Much of this material is in Section 7.3.2 (pp. 145-149), except

The Gauss-Markov Theorem is done better here.

They discuss projections briefly in Chapter 9.
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Model: y = Xβ + ε

where

X is an n× (k + 1) matrix of observed constants with
linearly independent columns.

β is a (k + 1)× 1 matrix of unknown constants
(parameters).

ε is an n× 1 random vector with E(ε) = 0 and
cov(ε) = σ2In.

σ2 is an unknown constant.

Least squares estimator of β is

β̂ = (X′X)−1X′y
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Unbiased Estimation
y = Xβ + ε

E{β̂} = E{(X′X)−1X′y}
= (X′X)−1X′E{y}
= (X′X)−1X′ Xβ

= β

for any β ∈ Rk+1, so β̂ is an unbiased estimator of β.
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Unbiased Estimation Gauss-Markov Theorem Projections

Covariance matrix
Using cov(Aw) = Acov(w)A′

cov
(
β̂
)

= cov
(
(X′X)−1X′y

)
= (X′X)−1X′cov(y)

(
(X′X)−1X′

)′
= (X′X)−1X′ σ2In X′′(X′X)−1′

= σ2(X′X)−1X′X(X′X)−1

= σ2(X′X)−1
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What are we estimating when we estimate β?
Human resources example: y = β0 + β1x1 + β2x2 + β3x3 + ε

x1 = University GPA.

x2 = Job interview score.

x3 = Test score.

y = Percent salary increase after one year.

E(y) = β0 + β1x1 + β2x2 + β3x3.

β1, β2 and β3 are links between predictor variables and
(expected) response variable value.

β0 is for curve fitting – no interpretation in this example.

Question: Holding interview and test scores constant, how
much does GPA matter?

E(y) = β0 + β2x2 + β3x3 + β1x1.
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Estimating linear combinations of β values
y = β0 + β1x1 + β2x2 + β3x3 + ε

`0β0 + `1β1 + · · · + `kβk

x1 = University GPA, x2 = Interview score, x3 = Test score.
For fixed job interview score and test score, what’s the
connection between GPA and salary increase?

`′β = (0 1 0 0)


β0

β1

β2

β3

 = β1
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Another linear combination

What’s the expected salary increase for a job candidate with a
university GPA of 2.5, an interview score of 80% and a test
score of 70%?

`′β = (1 2.5 80 70)


β0
β1
β2
β3


Estimated expected value is often used for prediction.

9 / 32



Unbiased Estimation Gauss-Markov Theorem Projections

Natural Estimator

Natural Estimator of `′β is `′β̂.
It’s unbiased: E{`′β̂} = `′E{β̂} = `′β
Small variance in an unbiased estimator is good. It’s the
variance of the sampling distribution.
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Linear Combination

The natural estimator of `′β is a linear combination of the

yi values.

`′β̂ = `′(X′X)−1X′y = a′0y

Let L = a1y1 + a2y2 + · · ·+ anyn be another linear
combination of yi with E(L) = `′β for every β ∈ Rk+1.

If we can find L, unbiased, with V ar(L) < V ar(`′β̂), we
should use that L to estimate `′β instead of `′β̂.
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A Serious L = a′y

β̂w = (X′WX)−1X′Wy

where W is an n× n matrix of rank at least k + 1.

E
{
β̂w

}
= E

{
(X′WX)−1X′Wy

}
= (X′WX)−1X′WE {y}
= (X′WX)−1X′WXβ

= β

Let L = `′β̂w.
Then E{L} = `′E{β̂w} = `′β.

Should we seek W with V ar(`′β̂w) < V ar(`′β̂)?
The Gauss-Markov Theorem says don’t bother.
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The Gauss-Markov Theorem

For the general linear model y = Xβ + ε, etc., let
E(a′y) = `′β for all β ∈ Rk+1.

Then V ar(`′β̂) ≤ V ar(a′y), with equality only
when a = X(X′X)−1` (in which case a′y = `′β̂).
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Proof of the Gauss-Markov-Theorem

The impressive part.

The rest of the proof (just a calculation).
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The impressive part

E(a′y) = a′E(y)

= a′Xβ

= `′β

For all β ∈ Rk+1.

This implies a′X = `′.

But not by cancelling β!
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a′Xβ = `′β for all β ∈ Rk+1

a′X = v′ is 1× (k + 1).

v′ = (v0, v1, . . . , vk).

v′β = `′β.

For all β ∈ Rk+1, meaning even for very funny β vectors.

v′β =
(
v0 v1 · · · vk

)


1
0
...
0

 =
(
`0 `1 · · · `k

)


1
0
...
0

 = `′β

So v0 = `0.
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v′β = `′β
For all β ∈ Rk+1

v′β =
(
v0 v1 v2 · · · vk

)


0
1
0
...
0


= `′β

=
(
`0 `1 `2 · · · `k

)


0
1
0
...
0


So v1 = `1.
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v′β = `′β
For all β ∈ Rk+1

v′β =
(
v0 v1 v2 · · · vk

)


0
0
1
...
0


= `′β

=
(
`0 `1 `2 · · · `k

)


0
0
1
...
0


So v2 = `2.
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Continuing . . .

· · ·

19 / 32
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v′β = `′β
For all β ∈ Rk+1

v′β =
(
v0 v1 v2 · · · vk

)


0
0
0
...
1


= `′β

=
(
`0 `1 `2 · · · `k

)


0
0
0
...
1


So vk = `k.
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Conclusion

a′X = `′ ⇔ ` = X′a

This condition is both necessary and sufficient for a′y to be
an unbiased estimator of `′β.

We have proved necessary.
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Calculation part of the Proof
Using `′ = a′X ⇔ ` = X′a

V ar(a′y)− V ar(`′β̂) = cov(a′y)− cov(`′β̂)

= a′cov(y)a− `′cov(β̂)`

= a′σ2Ina− `′σ2(X′X)−1`

= σ2
(
a′Ina− `′(X′X)−1`

)
= σ2

(
a′Ina− a′X(X′X)−1X′a

)
= σ2a′ (In −H)a

= σ2a′ (In −H)′ (In −H)a

= σ2 ((In −H)a)′ (In −H)a

= σ2 z′z = σ2
n∑

i=1

z2i

≥ 0.
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Continuing
And using `′ = a′X ⇔ ` = X′a again

Have V ar(a′y)− V ar(`′β̂) = σ2 z′z ≥ 0,

Where z = (In −H)a.

Variances are the same if and only if z = 0.

⇒ (In −H)a = 0

⇒ a = Ha

⇒ a = X(X′X)−1X′a

⇒ a = X(X′X)−1`

⇒ a′y = `′(X′X)−1X′y = `′β̂

So `′β̂ is the unique minimum variance linear unbiased
estimator of `′β. �
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BLUE

Sometimes we say that β̂ is the

Best

Linear

Unbiased

Estimator.
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Unbiased Estimation Gauss-Markov Theorem Projections

Projections

Let V = {v ∈ Rn : v = Xb,b ∈ Rk+1}
The space spanned by the columns of X.

All linear combinations of the columns of X. The elements
of b are the coefficients of the linear combination.

Some important vectors are in V.

E(y) = Xβ: β is a vector b.

ŷ = Xβ̂: β̂ is a vector b.
Every column of X is in V.
Is y ∈ V?
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Is y ∈ V = {v ∈ Rn : v = Xb,b ∈ Rk+1}?

The k + 1 linearly independent columns of X span V.

So V is of dimension k + 1 < n.

And V is a set of volume zero in Rn.

If εi have a continuous distribution (with a density), then
the distribution of the random vector y is also continuous.

And the probability that y will fall into a set of volume
zero is equal to zero: P{y ∈ V} = 0.
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What point p ∈ V is closest to y?

Euclidean distance is√
(y1 − p1)2 + (y2 − p2)2 + · · ·+ (yn − pn)2

where p = Xb, some b ∈ Rk+1. To find it, minimize

(y − p)′(y − p) = (y −Xb)′(y −Xb)

over all b ∈ Rk+1.

We’ve already done this!

The answer is b = β̂.

p = Xβ̂ = ŷ.

The closest point in V to y is ŷ.
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Projection: ŷ is the shadow of y on V

V

ε̂

ŷ

y

ŷ + ε̂ = ŷ + (y − ŷ) = y
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Projection Operator
H = X(X′X)−1X′

ŷ is the projection of y onto V.

H is the projection operator: Hy = ŷ.

H sends any point in Rn to V.

Hp = X(X′X)−1X′p = Xb.

The projection is the closest point.

If p ∈ V already, Hp = p.

Hp = X(X′X)−1X′Xb = Xb = p.
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Picture suggests ε̂ ⊥ ŷ

V

ε̂

ŷ

y
In fact, ε̂ ⊥ v for all v ∈ V.

v′ ε̂ = (Xb)′ ε̂

= b′X′ ε̂

= b′0 = 0

v ∈ V includes

ŷ = Xβ̂.
E(y) = Xβ.
Every column of X.
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Another way to arrive at the normal equations

V

ε̂

ŷ

y

Least squares task is to
minimize
Q = (y −Xβ)′(y −Xβ).

Find the Xβ point in V that
is closest to y. Call it Xβ̂.

Drop a perpendicular
(normal) from y to V.

This perpendicular is parallel
to y −Xβ̂ = ε̂.

So y −Xβ̂ is at right angles
to all basis vectors of V.
Inner products are all zero.

That is, X′(y −Xβ̂) = 0.

⇒ X′Xβ̂ = X′y.

These are the “normal
equations.”

Wikipedia says “In geometry,
a normal is an object such as
a line, ray, or vector that is
perpendicular to a given
object.”
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The LATEX source code is available from the course
website:
http://www.utstat.toronto.edu/∼brunner/oldclass/302f20

32 / 32

http://www.utstat.toronto.edu/~brunner
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US
http://www.utstat.toronto.edu/~brunner/oldclass/302f20

	Unbiased Estimation
	Gauss-Markov Theorem
	Projections

