More Properties of Least Squares Estimation ${ }^{1}$ STA 302 Fall 2020

${ }^{1}$ See last slide for copyright information.

Overview

1 Unbiased Estimation

2 Gauss-Markov Theorem

3 Projections

Reading in In Rencher and Schaalje's Linear Models In

 StatisticsMuch of this material is in Section 7.3.2 (pp. 145-149), except
■ The Gauss-Markov Theorem is done better here.
■ They discuss projections briefly in Chapter 9.

Model: $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$

where
\mathbf{X} is an $n \times(k+1)$ matrix of observed constants with linearly independent columns.
$\boldsymbol{\beta}$ is a $(k+1) \times 1$ matrix of unknown constants (parameters).
$\boldsymbol{\epsilon}$ is an $n \times 1$ random vector with $E(\boldsymbol{\epsilon})=\mathbf{0}$ and $\operatorname{cov}(\boldsymbol{\epsilon})=\sigma^{2} \mathbf{I}_{n}$.
σ^{2} is an unknown constant.
Least squares estimator of $\boldsymbol{\beta}$ is

$$
\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}
$$

Unbiased Estimation
 $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$

$$
\begin{aligned}
E\{\widehat{\boldsymbol{\beta}}\} & =E\left\{\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}\right\} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} E\{\mathbf{y}\} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X} \boldsymbol{\beta} \\
& =\boldsymbol{\beta}
\end{aligned}
$$

for any $\boldsymbol{\beta} \in \mathbb{R}^{k+1}$, so $\widehat{\boldsymbol{\beta}}$ is an unbiased estimator of $\boldsymbol{\beta}$.

Covariance matrix
$\mathrm{Using} \operatorname{cov}(\mathbf{A w})=\mathbf{A} \operatorname{cov}(\mathbf{w}) \mathbf{A}^{\prime}$

$$
\begin{aligned}
\operatorname{cov}(\widehat{\boldsymbol{\beta}}) & =\operatorname{cov}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}\right) \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \operatorname{cov}(\mathbf{y})\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)^{\prime} \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \sigma^{2} \mathbf{I}_{n} \mathbf{X}^{\prime \prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1 \prime} \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}
\end{aligned}
$$

What are we estimating when we estimate β ?

Human resources example: $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\epsilon$

- $x_{1}=$ University GPA.
- $x_{2}=$ Job interview score.
- $x_{3}=$ Test score.
- $y=$ Percent salary increase after one year.

■ $E(y)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}$.

- β_{1}, β_{2} and β_{3} are links between predictor variables and (expected) response variable value.
- β_{0} is for curve fitting - no interpretation in this example.

■ Question: Holding interview and test scores constant, how much does GPA matter?

$$
E(y)=\beta_{0}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{1} x_{1} .
$$

Estimating linear combinations of β values

 $y=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\epsilon$$$
\ell_{0} \beta_{0}+\ell_{1} \beta_{1}+\cdots+\ell_{k} \beta_{k}
$$

$x_{1}=$ University GPA, $x_{2}=$ Interview score, $x_{3}=$ Test score.
For fixed job interview score and test score, what's the connection between GPA and salary increase?

$$
\boldsymbol{\ell}^{\prime} \boldsymbol{\beta}=\left(\begin{array}{llll}
0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right)=\beta_{1}
$$

Another linear combination

What's the expected salary increase for a job candidate with a university GPA of 2.5 , an interview score of 80% and a test score of 70% ?

Estimated expected value is often used for prediction.

Natural Estimator

- Natural Estimator of $\boldsymbol{\ell}^{\prime} \boldsymbol{\beta}$ is $\boldsymbol{\ell}^{\prime} \widehat{\boldsymbol{\beta}}$.
- It's unbiased: $E\left\{\boldsymbol{\ell}^{\prime} \widehat{\boldsymbol{\beta}}\right\}=\boldsymbol{\ell}^{\prime} E\{\widehat{\boldsymbol{\beta}}\}=\boldsymbol{\ell}^{\prime} \boldsymbol{\beta}$
- Small variance in an unbiased estimator is good. It's the variance of the sampling distribution.

Linear Combination

- The natural estimator of $\ell^{\prime} \boldsymbol{\beta}$ is a linear combination of the y_{i} values.

$$
\boldsymbol{\ell}^{\prime} \widehat{\boldsymbol{\beta}}=\ell^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\mathbf{a}_{0}^{\prime} \mathbf{y}
$$

■ Let $L=a_{1} y_{1}+a_{2} y_{2}+\cdots+a_{n} y_{n}$ be another linear combination of y_{i} with $E(L)=\boldsymbol{\ell}^{\prime} \boldsymbol{\beta}$ for every $\boldsymbol{\beta} \in \mathbb{R}^{k+1}$.

- If we can find L, unbiased, with $\operatorname{Var}(L)<\operatorname{Var}\left(\ell^{\prime} \widehat{\boldsymbol{\beta}}\right)$, we should use that L to estimate $\boldsymbol{\ell}^{\prime} \boldsymbol{\beta}$ instead of $\boldsymbol{\ell}^{\prime} \widehat{\boldsymbol{\beta}}$.

A Serious $L=\mathbf{a}^{\prime} \mathbf{y}$

$$
\widehat{\boldsymbol{\beta}}_{w}=\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W} \mathbf{y}
$$

where \mathbf{W} is an $n \times n$ matrix of rank at least $k+1$.

$$
\begin{aligned}
E\left\{\widehat{\boldsymbol{\beta}}_{w}\right\} & =E\left\{\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W} \mathbf{y}\right\} \\
& =\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W} E\{\mathbf{y}\} \\
& =\left(\mathbf{X}^{\prime} \mathbf{W} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{W} \mathbf{X} \boldsymbol{\beta} \\
& =\boldsymbol{\beta}
\end{aligned}
$$

- Let $L=\boldsymbol{\ell}^{\prime} \widehat{\boldsymbol{\beta}}_{w}$.
- Then $E\{L\}=\ell^{\prime} E\left\{\widehat{\boldsymbol{\beta}}_{w}\right\}=\boldsymbol{\ell}^{\prime} \boldsymbol{\beta}$.
- Should we seek \mathbf{W} with $\operatorname{Var}\left(\boldsymbol{\ell}^{\prime} \widehat{\boldsymbol{\beta}}_{w}\right)<\operatorname{Var}\left(\ell^{\prime} \widehat{\boldsymbol{\beta}}\right)$?
- The Gauss-Markov Theorem says don't bother.

The Gauss-Markov Theorem

For the general linear model $\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$, etc., let $E\left(\mathbf{a}^{\prime} \mathbf{y}\right)=\ell^{\prime} \boldsymbol{\beta}$ for all $\boldsymbol{\beta} \in \mathbb{R}^{k+1}$.
Then $\operatorname{Var}\left(\ell^{\prime} \widehat{\boldsymbol{\beta}}\right) \leq \operatorname{Var}\left(\mathbf{a}^{\prime} \mathbf{y}\right)$, with equality only when $\mathbf{a}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \ell\left(\right.$ in which case $\left.a^{\prime} \mathbf{y}=\ell^{\prime} \widehat{\boldsymbol{\beta}}\right)$.

Proof of the Gauss-Markov-Theorem

- The impressive part.
- The rest of the proof (just a calculation).

The impressive part

$$
\begin{aligned}
E\left(\mathbf{a}^{\prime} \mathbf{y}\right) & =\mathbf{a}^{\prime} E(\mathbf{y}) \\
& =\mathbf{a}^{\prime} \mathbf{X} \boldsymbol{\beta} \\
& =\ell^{\prime} \boldsymbol{\beta}
\end{aligned}
$$

For all $\boldsymbol{\beta} \in \mathbb{R}^{k+1}$.

- This implies $\mathbf{a}^{\prime} \mathbf{X}=\boldsymbol{\ell}^{\prime}$.
$■$ But not by cancelling $\boldsymbol{\beta}$!

$\mathrm{a}^{\prime} \mathbf{X} \boldsymbol{\beta}=\boldsymbol{\ell}^{\prime} \boldsymbol{\beta}$ for all $\boldsymbol{\beta} \in \mathbb{R}^{k+1}$

- $\mathbf{a}^{\prime} \mathbf{X}=\mathbf{v}^{\prime}$ is $1 \times(k+1)$.

■ $\mathbf{v}^{\prime}=\left(v_{0}, v_{1}, \ldots, v_{k}\right)$.

- $\mathbf{v}^{\prime} \boldsymbol{\beta}=\boldsymbol{\ell}^{\prime} \boldsymbol{\beta}$.
- For all $\boldsymbol{\beta} \in \mathbb{R}^{k+1}$, meaning even for very funny $\boldsymbol{\beta}$ vectors.
$\mathbf{v}^{\prime} \boldsymbol{\beta}=\left(\begin{array}{llll}v_{0} & v_{1} & \cdots & v_{k}\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right)=\left(\begin{array}{llll}\ell_{0} & \ell_{1} & \cdots & \ell_{k}\end{array}\right)\left(\begin{array}{c}1 \\ 0 \\ \vdots \\ 0\end{array}\right)=\ell^{\prime} \boldsymbol{\beta}$
So $v_{0}=\ell_{0}$.

$\mathrm{v}^{\prime} \beta=\ell^{\prime} \beta$

For all $\beta \in \mathbb{R}^{k+1}$

$$
\begin{aligned}
\mathbf{v}^{\prime} \boldsymbol{\beta} & =\left(\begin{array}{lllll}
v_{0} & v_{1} & v_{2} & \cdots & v_{k}
\end{array}\right)\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right) \\
& =\ell^{\prime} \boldsymbol{\beta} \\
& =\left(\begin{array}{lllll}
\ell_{0} & \ell_{1} & \ell_{2} & \cdots & \ell_{k}
\end{array}\right)\left(\begin{array}{c}
0 \\
1 \\
0 \\
\vdots \\
0
\end{array}\right)
\end{aligned}
$$

So $v_{1}=\ell_{1}$.

$\mathrm{v}^{\prime} \beta=\ell^{\prime} \beta$

For all $\beta \in \mathbb{R}^{k+1}$

$$
\begin{aligned}
\mathbf{v}^{\prime} \boldsymbol{\beta} & =\left(\begin{array}{lllll}
v_{0} & v_{1} & v_{2} & \cdots & v_{k}
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots \\
0
\end{array}\right) \\
& =\ell^{\prime} \boldsymbol{\beta} \\
& =\left(\begin{array}{lllll}
\ell_{0} & \ell_{1} & \ell_{2} & \cdots & \ell_{k}
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
1 \\
\vdots \\
0
\end{array}\right)
\end{aligned}
$$

So $v_{2}=\ell_{2}$.

Continuing ...

$\mathrm{v}^{\prime} \beta=\ell^{\prime} \beta$

For all $\beta \in \mathbb{R}^{k+1}$

$$
\begin{aligned}
\mathbf{v}^{\prime} \boldsymbol{\beta} & =\left(\begin{array}{lllll}
v_{0} & v_{1} & v_{2} & \cdots & v_{k}
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right) \\
& =\ell^{\prime} \boldsymbol{\beta} \\
& =\left(\begin{array}{lllll}
\ell_{0} & \ell_{1} & \ell_{2} & \cdots & \ell_{k}
\end{array}\right)\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
1
\end{array}\right)
\end{aligned}
$$

So $v_{k}=\ell_{k}$.

Conclusion

$\mathbf{a}^{\prime} \mathbf{X}=\ell^{\prime} \Leftrightarrow \boldsymbol{\ell}=\mathbf{X}^{\prime} \mathbf{a}$

- This condition is both necessary and sufficient for $\mathbf{a}^{\prime} \mathbf{y}$ to be an unbiased estimator of $\boldsymbol{\ell}^{\prime} \boldsymbol{\beta}$.
■ We have proved necessary.

Calculation part of the Proof

Using

$$
\begin{aligned}
\operatorname{Var}\left(\mathbf{a}^{\prime} \mathbf{y}\right)-\operatorname{Var}\left(\ell^{\prime} \widehat{\boldsymbol{\beta}}\right) & =\operatorname{cov}\left(\mathbf{a}^{\prime} \mathbf{y}\right)-\operatorname{cov}\left(\ell^{\prime} \widehat{\boldsymbol{\beta}}\right) \\
& =\mathbf{a}^{\prime} \operatorname{cov}(\mathbf{y}) \mathbf{a}-\ell^{\prime} \operatorname{cov}(\widehat{\boldsymbol{\beta}}) \ell \\
& =\mathbf{a}^{\prime} \sigma^{2} \mathbf{I}_{\mathbf{a}} \mathbf{a}-\ell^{\prime} \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \ell \\
& =\sigma^{2}\left(\mathbf{a}^{\prime} \mathbf{I}_{n} \mathbf{a}-\ell^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \ell\right) \\
& =\sigma^{2}\left(\mathbf{a}^{\prime} \mathbf{I}_{n} \mathbf{a}-\mathbf{a}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{a}\right) \\
& =\sigma^{2} \mathbf{a}^{\prime}\left(\mathbf{I}_{n}-\mathbf{H}\right) \mathbf{a} \\
& =\sigma^{2} \mathbf{a}^{\prime}\left(\mathbf{I}_{n}-\mathbf{H}\right)^{\prime}\left(\mathbf{I}_{n}-\mathbf{H}\right) \mathbf{a} \\
& =\sigma^{2}\left(\left(\mathbf{I}_{n}-\mathbf{H}\right) \mathbf{a}^{\prime}\left(\mathbf{I}_{n}-\mathbf{H}\right) \mathbf{a}\right. \\
& =\sigma^{2} \mathbf{z}^{\prime} \mathbf{z}=\sigma^{2} \sum_{i=1}^{n} z_{i}^{2} \\
& \geq 0 .
\end{aligned}
$$

Continuing

And using

- Have $\operatorname{Var}\left(\mathbf{a}^{\prime} \mathbf{y}\right)-\operatorname{Var}\left(\boldsymbol{\ell}^{\prime} \widehat{\boldsymbol{\beta}}\right)=\sigma^{2} \mathbf{z}^{\prime} \mathbf{z} \geq 0$,

■ Where $\mathbf{z}=\left(\mathbf{I}_{n}-\mathbf{H}\right) \mathbf{a}$.

- Variances are the same if and only if $\mathbf{z}=\mathbf{0}$.

$$
\begin{aligned}
& \Rightarrow \quad\left(\mathbf{I}_{n}-\mathbf{H}\right) \mathbf{a}=\mathbf{0} \\
& \Rightarrow \quad \mathbf{a}=\mathbf{H a} \\
& \Rightarrow \quad \mathbf{a}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{a} \\
& \Rightarrow \quad \mathbf{a}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \ell \\
& \Rightarrow \mathbf{a}^{\prime} \mathbf{y}=\ell^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\ell^{\prime} \widehat{\boldsymbol{\beta}}
\end{aligned}
$$

So $\boldsymbol{\ell}^{\prime} \widehat{\boldsymbol{\beta}}$ is the unique minimum variance linear unbiased estimator of $\boldsymbol{\ell}^{\prime} \boldsymbol{\beta}$.

BLUE

Sometimes we say that $\widehat{\boldsymbol{\beta}}$ is the

Best
Linear
Unbiased
Estimator.

Projections

- Let $\mathcal{V}=\left\{\mathbf{v} \in \mathbb{R}^{n}: \mathbf{v}=\mathbf{X b}, \mathbf{b} \in \mathbb{R}^{k+1}\right\}$
- The space spanned by the columns of \mathbf{X}.
- All linear combinations of the columns of \mathbf{X}. The elements of \mathbf{b} are the coefficients of the linear combination.
- Some important vectors are in \mathcal{V}.
- $E(\mathbf{y})=\mathbf{X} \boldsymbol{\beta}: \boldsymbol{\beta}$ is a vector \mathbf{b}.
- $\widehat{\mathbf{y}}=\mathbf{X} \widehat{\boldsymbol{\beta}}: \widehat{\boldsymbol{\beta}}$ is a vector \mathbf{b}.
- Every column of \mathbf{X} is in \mathcal{V}.
\square Is $y \in \mathcal{V}$?

$$
\text { Is } \mathbf{y} \in \mathcal{V}=\left\{\mathbf{v} \in \mathbb{R}^{n}: \mathbf{v}=\mathbf{X b}, \mathbf{b} \in \mathbb{R}^{k+1}\right\} ?
$$

■ The $k+1$ linearly independent columns of $\mathbf{X} \operatorname{span} \mathcal{V}$.

- So \mathcal{V} is of dimension $k+1<n$.
- And \mathcal{V} is a set of volume zero in \mathbb{R}^{n}.
- If ϵ_{i} have a continuous distribution (with a density), then the distribution of the random vector \mathbf{y} is also continuous.
- And the probability that \mathbf{y} will fall into a set of volume zero is equal to zero: $P\{\mathbf{y} \in \mathcal{V}\}=0$.

What point $\mathbf{p} \in \mathcal{V}$ is closest to \mathbf{y} ?

Euclidean distance is

$$
\sqrt{\left(y_{1}-p_{1}\right)^{2}+\left(y_{2}-p_{2}\right)^{2}+\cdots+\left(y_{n}-p_{n}\right)^{2}}
$$

where $\mathbf{p}=\mathbf{X b}$, some $\mathbf{b} \in \mathbb{R}^{k+1}$. To find it, minimize

$$
(\mathbf{y}-\mathbf{p})^{\prime}(\mathbf{y}-\mathbf{p})=(\mathbf{y}-\mathbf{X b})^{\prime}(\mathbf{y}-\mathbf{X} \mathbf{b})
$$

over all $\mathbf{b} \in \mathbb{R}^{k+1}$.

■ We've already done this!

- The answer is $\mathbf{b}=\widehat{\boldsymbol{\beta}}$.
- $\mathbf{p}=\mathbf{X} \widehat{\boldsymbol{\beta}}=\widehat{\mathbf{y}}$.
- The closest point in \mathcal{V} to \mathbf{y} is $\widehat{\mathbf{y}}$.

Projection: $\widehat{\mathbf{y}}$ is the shadow of \mathbf{y} on \mathcal{V}

$\widehat{\mathbf{y}}+\widehat{\boldsymbol{\epsilon}}=\widehat{\mathbf{y}}+(\mathbf{y}-\widehat{\mathbf{y}})=\mathbf{y}$

Projection Operator $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$

$■ \widehat{\mathbf{y}}$ is the projection of \mathbf{y} onto \mathcal{V}.
■ \mathbf{H} is the projection operator: $\mathbf{H y}=\widehat{\mathbf{y}}$.

- \mathbf{H} sends any point in \mathbb{R}^{n} to \mathcal{V}.

$$
\mathbf{H} \mathbf{p}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{p}=\mathbf{X} \mathbf{b} .
$$

- The projection is the closest point.

■ If $\mathbf{p} \in \mathcal{V}$ already, $\mathbf{H p}=\mathbf{p}$.

$$
\mathbf{H} \mathbf{p}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X} \mathbf{b}=\mathbf{X} \mathbf{b}=\mathbf{p}
$$

Picture suggests $\widehat{\boldsymbol{\epsilon}} \perp \widehat{\boldsymbol{y}}$

■ In fact, $\widehat{\boldsymbol{\epsilon}} \perp \mathbf{v}$ for all $\mathbf{v} \in \mathcal{V}$.

$$
\begin{aligned}
\mathbf{v}^{\prime} \widehat{\boldsymbol{\epsilon}} & =(\mathbf{X b})^{\prime} \widehat{\boldsymbol{\epsilon}} \\
& =\mathbf{b}^{\prime} \mathbf{X}^{\prime} \widehat{\boldsymbol{\epsilon}} \\
& =\mathbf{b}^{\prime} \mathbf{0}=0
\end{aligned}
$$

$\mathbf{\square} \mathbf{v} \in \mathcal{V}$ includes

- $\widehat{\mathbf{y}}=\mathbf{X} \widehat{\boldsymbol{\beta}}$.
- $E(\mathbf{y})=\mathbf{X} \boldsymbol{\beta}$.
- Every column of \mathbf{X}.

Another way to arrive at the normal equations

- Least squares task is to minimize
$Q=(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})$.
- Find the $\mathbf{X} \boldsymbol{\beta}$ point in ν that is closest to \mathbf{y}. Call it $\mathbf{X} \widehat{\boldsymbol{\beta}}$.
- Drop a perpendicular (normal) from \mathbf{y} to \mathcal{V}.
- This perpendicular is parallel to $\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}}=\widehat{\boldsymbol{\epsilon}}$.
- So $\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}}$ is at right angles to all basis vectors of \mathcal{V}. Inner products are all zero.
- That is, $\mathbf{X}^{\prime}(\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}})=\mathbf{0}$. $\Rightarrow \mathbf{X}^{\prime} \mathbf{X} \widehat{\boldsymbol{\beta}}=\mathbf{X}^{\prime} \mathbf{y}$.
- These are the "normal equations."
- Wikipedia says "In geometry, a normal is an object such as a line, ray, or vector that is perpendicular to a given object."

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/302f20

