Tests and Confidence Intervals ${ }^{1}$ STA 302 Fall 2020

${ }^{1}$ See last slide for copyright information.

Overview

(1) Normal Model
(2) t distribution
(3) F distribution

4 Multiple Testing

The Normal Model

Section 7.6 in the text

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

where
\mathbf{X} is an $n \times(k+1)$ matrix of observed constants with linearly independent columns.
$\boldsymbol{\beta}$ is a $(k+1) \times 1$ matrix of unknown constants.

$$
\boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \sigma^{2} I_{n}\right)
$$

Using facts about the multivariate normal

- For the multivariate normal, zero covariance implies independence.
- If $\mathbf{v} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then
- $\mathbf{A v}+\mathbf{c} \sim N_{q}\left(\mathbf{A} \boldsymbol{\mu}+\mathbf{c}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}\right)$.
- If $\boldsymbol{\Sigma}$ is positive definite, $w=(\mathbf{v}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{v}-\boldsymbol{\mu}) \sim \chi^{2}(p)$.

Distribution of $\widehat{\boldsymbol{\beta}}$

For $\mathbf{y}=X \boldsymbol{\beta}+\boldsymbol{\epsilon}$ with $\boldsymbol{\epsilon} \sim N\left(\mathbf{0}, \sigma^{2} I_{n}\right)$,

- $\mathbf{y} \sim N\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} I_{n}\right)$.
- $\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}=\mathbf{A y}$.
- Earlier calculations yielded
$E(\widehat{\boldsymbol{\beta}})=\boldsymbol{\beta}$ and $\operatorname{cov}(\widehat{\boldsymbol{\beta}})=\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}$, so

$$
\widehat{\boldsymbol{\beta}} \sim N_{k+1}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)
$$

Independence of $\widehat{\boldsymbol{\beta}}$ and $\widehat{\boldsymbol{\epsilon}}$

Like the independence of \bar{x} and s^{2}

$$
\left(\frac{\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}}{\mathbf{I}-\mathbf{H}}\right) \mathbf{y}=\left(\frac{\widehat{\boldsymbol{\beta}}}{\widehat{\boldsymbol{\epsilon}}}\right)
$$

- So $\widehat{\boldsymbol{\beta}}$ and $\widehat{\boldsymbol{\epsilon}}$ are jointly multivariate normal.
- Independence will follow from zero covariance.
- Use $\operatorname{cov}(\mathbf{A y}, \mathbf{B y})=\mathbf{A} \operatorname{cov}(\mathbf{y}) \mathbf{B}^{\prime}$.

Independence of $\widehat{\boldsymbol{\beta}}$ and $\widehat{\boldsymbol{\epsilon}}$, continued Using $\operatorname{cov}(\mathbf{A y}, \mathbf{B y})=\mathbf{A} \operatorname{cov}(\mathbf{y}) \mathbf{B}^{\prime}$

$$
\begin{aligned}
\operatorname{cov}(\widehat{\boldsymbol{\beta}}, \widehat{\boldsymbol{\epsilon}}) & =\operatorname{cov}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y},(\mathbf{I}-\mathbf{H}) \mathbf{y}\right) \\
& =\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \sigma^{2} I_{n}(\mathbf{I}-\mathbf{H})^{\prime} \\
& =\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}(\mathbf{I}-\mathbf{H}) \\
& =\sigma^{2}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{H}\right) \\
& =\sigma^{2}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \\
& =\sigma^{2}\left(\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}-\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \\
& =\mathbf{O}
\end{aligned}
$$

So $\widehat{\boldsymbol{\beta}}$ and $\widehat{\boldsymbol{\epsilon}}$ are independent.

Distribution of $S S E / \sigma^{2}$

Using $(\mathbf{v}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{v}-\boldsymbol{\mu}) \sim \chi^{2}(p)$.
Earlier, we found $(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})=\widehat{\boldsymbol{\epsilon}}^{\prime} \widehat{\boldsymbol{\epsilon}}+(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime} \mathbf{X}^{\prime} \mathbf{X}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})$.

$$
\begin{array}{ccc}
\frac{1}{\sigma^{2}}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}) & =\frac{S S E}{\sigma^{2}}+(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime} \frac{1}{\sigma^{2}} \mathbf{X}^{\prime} \mathbf{X}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \\
w & =w_{1}+ & w_{2}
\end{array}
$$

- $\mathbf{y} \sim N_{n}\left(\mathbf{X} \boldsymbol{\beta}, \sigma^{2} \mathbf{I}_{n}\right)$, so

$$
w=(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime}\left(\sigma^{2} \mathbf{I}_{n}\right)^{-1}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}) \sim \chi^{2}(n)
$$

- $\widehat{\boldsymbol{\beta}} \sim N_{k+1}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)$, so

$$
w_{2}=(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})^{\prime}\left(\sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)^{-1}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \sim \chi^{2}(k+1)
$$

- w_{1} and w_{2} are independent because $\widehat{\boldsymbol{\beta}}$ and $\widehat{\boldsymbol{\epsilon}}$ are independent.
- So $w_{1}=\frac{S S E}{\sigma^{2}}$ is chi-squared, with degrees of freedom $n-(k+1)=n-k-1$.
- This result does not depend on the model having an intercept, and it does not depend on the truth of any null hypothesis.

Tests and confidence intervals for $\mathbf{a}^{\prime} \boldsymbol{\beta}$

For Gauss-Markov Theorem, it was called $\boldsymbol{\ell}^{\prime} \boldsymbol{\beta}$.
See Section 8.6 in the text.

- Single linear combination of the β_{j} values.
- Including any individual β_{j}.
- Use the t distribution:

$$
t=\frac{z}{\sqrt{w / \nu}} \sim t(\nu)
$$

Choosing z and w in $t=\frac{z}{\sqrt{w / \nu}} \sim t(\nu)$

- $\widehat{\boldsymbol{\beta}} \sim N_{k+1}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)$
- So $\mathbf{a}^{\wedge} \widehat{\boldsymbol{\beta}} \sim N\left(\mathbf{a}^{\prime} \boldsymbol{\beta}, \ldots\right)$

$$
\begin{aligned}
\operatorname{cov}\left(\mathbf{a}^{\prime} \hat{\boldsymbol{\beta}}\right) & =\operatorname{cov}\left(\mathbf{a}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{y}\right) \\
& =\mathbf{a}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \operatorname{cov}(\mathbf{y})\left(\mathbf{a}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right)^{\prime} \\
& =\mathbf{a}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \sigma^{2} I_{n} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{a} \\
& =\sigma^{2} \mathbf{a}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{a} \\
& =\sigma^{2} \mathbf{a}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{a}
\end{aligned}
$$

- And $\mathbf{a}^{\prime} \widehat{\boldsymbol{\beta}} \sim N\left(\mathbf{a}^{\prime} \boldsymbol{\beta}, \sigma^{2} \mathbf{a}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{a}\right)$.
- Standardize $\mathbf{a}^{\prime} \widehat{\boldsymbol{\beta}}$, subtracting off mean and dividing by the standard deviation.

$t=\frac{z}{\sqrt{w / \nu}} \sim t(\nu)$

- $\mathbf{a}^{\prime} \widehat{\boldsymbol{\beta}} \sim N\left(\mathbf{a}^{\prime} \boldsymbol{\beta}, \sigma^{2} \mathbf{a}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{a}\right)$.
- Center and scale:

$$
z=\frac{\mathbf{a}^{\prime} \widehat{\boldsymbol{\beta}}-\mathbf{a}^{\prime} \boldsymbol{\beta}}{\sqrt{\left.\sigma^{2} \mathbf{a}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{a}\right)}} \sim N(0,1)
$$

- For the denominator, use

$$
w=\frac{S S E}{\sigma^{2}}=\frac{\sum_{i=1}^{n}\left(y_{i}-\widehat{y}_{i}\right)^{2}}{\sigma^{2}} \sim \chi^{2}(n-k-1)
$$

- With z and w independent.

$$
t=\frac{z}{\sqrt{w /(n-k-1)}} \sim t(n-k-1)
$$

$$
\begin{aligned}
& \text { With } \begin{aligned}
& z=\frac{\mathbf{a}^{\prime} \hat{\boldsymbol{\beta}}-\mathbf{a}^{\prime} \boldsymbol{\beta}}{\sqrt{\left.\sigma^{2} \mathbf{a}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{a}\right)}} \sim N(0,1) \text { and } w=\frac{S S E}{\sigma^{2}} \sim \chi^{2}(n-k-1), \\
& t=\frac{z}{\sqrt{w / \nu}} \\
&=\frac{\mathbf{a}^{\prime} \widehat{\boldsymbol{\beta}}-\mathbf{a}^{\prime} \boldsymbol{\beta}}{\sqrt{\left.\sigma^{2} \mathbf{a}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{a}\right)}} / \sqrt{\frac{S S E}{\sigma^{2}} /(n-k-1)} \\
&=\frac{\mathbf{a}^{\prime} \widehat{\boldsymbol{\beta}}-\mathbf{a}^{\prime} \boldsymbol{\beta}}{\sqrt{\left.M S E \mathbf{a}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{a}\right)}} \sim t(n-k-1)
\end{aligned}
\end{aligned}
$$

The t density

If $t \sim t(d f)$, then $P\left\{t>t_{\alpha / 2, d f}\right\}=\frac{\alpha}{2}$.

Confidence Interval for $\mathbf{a}^{\prime} \boldsymbol{\beta}$

$$
\begin{aligned}
1-\alpha= & P\left\{-t_{\alpha / 2}<t<t_{\alpha / 2}\right\} \\
= & P\left\{-t_{\alpha / 2}<\frac{\mathbf{a}^{\prime} \widehat{\boldsymbol{\beta}}-\mathbf{a}^{\prime} \boldsymbol{\beta}}{\sqrt{\left.M S E \mathbf{a}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{a}\right)}}<t_{\alpha / 2}\right\} \\
& \vdots \\
= & P\left\{\mathbf{a}^{\prime} \widehat{\boldsymbol{\beta}}-t_{\alpha / 2} \sqrt{\left.M S E \mathbf{a}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{a}\right)}<\mathbf{a}^{\prime} \boldsymbol{\beta}\right. \\
& \left.<\mathbf{a}^{\prime} \widehat{\boldsymbol{\beta}}+t_{\alpha / 2} \sqrt{\left.M S E \mathbf{a}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{a}\right)}\right\}
\end{aligned}
$$

Or, $\mathbf{a}^{\prime} \widehat{\boldsymbol{\beta}} \pm t_{\alpha / 2} \sqrt{M S E \mathbf{a}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{a}}$.

Testing $H_{0}: \mathbf{a}^{\prime} \boldsymbol{\beta}=t_{0}$

- Controlling (allowing) for High School GPA, does score on the OSSLT (Ontario Secondary School Literacy Test) predict success in university?
- $y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\epsilon_{i}$
- $x_{i, 1}=$ HS GPA
- $x_{i, 2}=$ OSSLT
- $y_{i}=$ First year university GPA
- $y_{i}=\left(\beta_{0}+\beta_{1} x_{i, 1}\right)+\beta_{2} x_{i, 2}+\epsilon_{i}$
- $H_{0}: \beta_{2}=0$.
- $H_{0}:\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)\left(\begin{array}{l}\beta_{0} \\ \beta_{1} \\ \beta_{2}\end{array}\right)=0$.

Test Statistic for $H_{0}: \mathbf{a}^{\prime} \boldsymbol{\beta}=t_{0}$

- $t=\frac{\mathbf{a}^{\prime} \widehat{\boldsymbol{\beta}}-\mathbf{a}^{\prime} \boldsymbol{\beta}}{\sqrt{\left.M S E \mathbf{a}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{a}\right)}} \sim t(n-k-1)$
- If $H_{0}: \mathbf{a}^{\prime} \boldsymbol{\beta}=t_{0}$ is true,
- $t^{*}=\frac{\mathbf{a}^{\prime} \widehat{\boldsymbol{\beta}}-t_{0}}{\sqrt{\left.M S E \mathbf{a}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{a}\right)}} \sim t(n-k-1)$.
- The most common example is $H_{0}: \beta_{j}=0$.
- Or something like $H_{0}: \beta_{1}-\beta_{2}=0$, if it makes sense.

Testing several linear combinations simultaneously

Sections 8.2-8.4 in the text, especially 8.4.

Question: Does HS GPA in the first two years help predict university GPA if you know the HS GPA in years 3 and 4 ?

$$
y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\beta_{3} x_{i, 3}+\beta_{4} x_{i, 4}+\epsilon_{i}
$$

- We are considering two competing models.
- The first model has HS GPA for all four years.
- The second model has HS GPA for only years 3 and 4 .
- The second model is obtained from the first, by setting $\beta_{1}=\beta_{2}=0$.
- That's the null hypothesis.

$H_{0}: \beta_{1}=\beta_{2}=0$ in matrix form

$$
\begin{aligned}
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4}
\end{array}\right) & =\binom{0}{0} \\
\mathbf{C} & \boldsymbol{\beta}
\end{aligned}
$$

Where \mathbf{C} is $q \times(k+1)$, with $q \leq k+1$ and linearly independent rows.

The F Distribution

If $w_{1} \sim \chi^{2}\left(\nu_{1}\right)$ and $w_{2} \sim \chi^{2}\left(\nu_{2}\right)$ are independent, then

$$
F=\frac{w_{1} / \nu_{1}}{w_{2} / \nu_{2}} \sim F\left(\nu_{1}, \nu_{2}\right)
$$

The general linear test of $H_{0}: \mathbf{C} \boldsymbol{\beta}=\mathbf{t}$

From the formula sheet, If $\mathbf{v} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $\mathbf{A v}+\mathbf{c} \sim N_{q}\left(\mathbf{A} \boldsymbol{\mu}+\mathbf{c}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}\right)$, and $w=(\mathbf{v}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{v}-\boldsymbol{\mu}) \sim \chi^{2}(p)$.
$\widehat{\boldsymbol{\beta}} \sim N_{k+1}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)$, so $\mathbf{C} \widehat{\boldsymbol{\beta}} \sim N_{q}\left(\mathbf{C} \boldsymbol{\beta}, \sigma^{2} \mathbf{C}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{C}^{\prime}\right)$, and if $H_{0}: \mathbf{C} \boldsymbol{\beta}=\mathbf{t}$ is true,

$$
\begin{aligned}
w_{1} & =(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t})^{\prime}\left(\sigma^{2} \mathbf{C}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{C}^{\prime}\right)^{-1}(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t}) \sim \chi^{2}(q) \\
& =\frac{1}{\sigma^{2}}(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t})^{\prime}\left(\mathbf{C}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{C}^{\prime}\right)^{-1}(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t}) \\
w_{2} & =\frac{S S E}{\sigma^{2}} \sim \chi^{2}(n-k-1) \\
F^{*} & =\frac{w_{1} / q}{w_{2} /(n-k-1)} \sim F(q, n-k-1)
\end{aligned}
$$

This result does not depend on the model having an intercept.

Formula for F^{*}

$$
\begin{aligned}
F^{*} & =\frac{w_{1} / q}{w_{2} /(n-k-1)} \\
& =\frac{\frac{1}{\sigma^{2}}(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t})^{\prime}\left(\mathbf{C}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{C}^{\prime}\right)^{-1}(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t}) / q}{\frac{S S E}{\sigma^{2}} /(n-k-1)} \\
& =\frac{(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t})^{\prime}\left(\mathbf{C}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{C}^{\prime}\right)^{-1}(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t})}{q M S E} \\
& \stackrel{H_{0}}{\sim} F(q, n-k-1)
\end{aligned}
$$

$$
F^{*}=\frac{(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t})^{\prime}\left(\mathbf{C}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{C}^{\prime}\right)^{-1}(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t})}{q M S E} \stackrel{H_{0}}{\sim} F(q, n-k-1)
$$

p-value

Logically equivalent null hypotheses

$$
\begin{gathered}
y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\beta_{2} x_{i, 2}+\beta_{3} x_{i, 3}+\beta_{4} x_{i, 4}+\epsilon_{i} \\
\\
\quad H_{0}: \beta_{1}-\beta_{2}=0, \beta_{2}-\beta_{3}=0, \beta_{3}=0 \\
\Leftrightarrow \\
\beta_{1}=\beta_{2}=\beta_{3}=0
\end{gathered}
$$

Better hope it does not matter how you state H_{0} !
Theorem: Let \mathbf{A} be a $q \times q$ non-singular matrix, so that $\mathbf{C} \boldsymbol{\beta}=\mathbf{t} \Leftrightarrow \mathbf{A C} \boldsymbol{\beta}=\mathbf{A t}$. The F^{*} statistic for testing $H_{0}:(\mathbf{A C}) \boldsymbol{\beta}=(\mathbf{A t})$ is the same as the statistic for testing $H_{0}: \mathbf{C} \boldsymbol{\beta}=\mathbf{t}$.

Proof

Test statistic for $H_{0}:(\mathbf{A C}) \boldsymbol{\beta}=(\mathbf{A t})$ is

$$
\begin{aligned}
F^{*} & =\frac{(\mathbf{A C} \widehat{\boldsymbol{\beta}}-\mathbf{A t})^{\prime}\left(\mathbf{A C}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}(\mathbf{A C})^{\prime}\right)^{-1}(\mathbf{A C} \widehat{\boldsymbol{\beta}}-\mathbf{A t})}{q M S E} \\
& =\frac{(\mathbf{A}(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t}))^{\prime}\left(\mathbf{A} \mathbf{C}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{C}^{\prime} \mathbf{A}^{\prime}\right)^{-1} \mathbf{A}(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t})}{q M S E} \\
& =\frac{(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t})^{\prime} \mathbf{A}^{\prime}\left(\mathbf{A} \mathbf{C}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{C}^{\prime} \mathbf{A}^{\prime}\right)^{-1} \mathbf{A}(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t})}{q M S E} \\
& =\frac{(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t})^{\prime} \mathbf{A}^{\prime} \mathbf{A}^{\prime-1}\left(\mathbf{C}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{C}^{\prime}\right)^{-1} \mathbf{A}^{-1} \mathbf{A}(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t})}{q M S E} \\
& =\frac{(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t})^{\prime}\left(\mathbf{C}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{C}^{\prime}\right)^{-1}(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t})}{q M S E}
\end{aligned}
$$

which is the test statistic for $H_{0}: \mathbf{C} \boldsymbol{\beta}=\mathbf{t}$.

Does the example fit the pattern $H_{0}:(\mathbf{A C}) \boldsymbol{\beta}=(\mathbf{A t})$? $H_{0}: \beta_{1}-\beta_{2}=0, \beta_{2}-\beta_{3}=0, \beta_{3}=0 \Leftrightarrow \beta_{1}=\beta_{2}=\beta_{3}=0$

$$
H_{0}:\left(\begin{array}{rrrrr}
0 & 1 & -1 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
\beta_{0} \\
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

Want $\mathbf{A}\left(\begin{array}{rrrrr}0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right)=\left(\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right)$
Yes: $\left(\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{rrrrr}0 & 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right)=\left(\begin{array}{lllll}0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right)$

Linearly equivalent null hypotheses

- Two null hypotheses are linearly equivalent if their \mathbf{C} matrices are row equivalent.
- Since elementary row operations correspond to multiplication by invertible matrices, all linearly equivalent null hypotheses yield the same F statistic for a given set of data.

Full versus Reduced Model Approach

- Divide the explanatory variables into two subsets, A and B. Want to test B controlling for A.
- For example, A is HS GPA in years 3 and $4 ; B$ is HS GPA in years 1 and 2.
- Fit a model with both A and B : Call it the Full Model, or the Unrestricted Model.
- Fit a model with just A : Call it the Reduced Model or Restricted Model.
- The restricted model is restricted by the null hypothesis. H_{0} says the variables in set B do not matter.
- The F-test is an exact likelihood ratio test for comparing the two models.

When you add the q additional explanatory variables in

 set B, R^{2} can only go up: $R^{2}(f u l l) \geq R^{2}($ reduced $)$By how much? Basis of the F test.

$$
\begin{aligned}
F^{*} & =\frac{\left(R^{2}(\text { full })-R^{2}(\text { reduced })\right) / q}{\left(1-R^{2}(\text { full })\right) /(n-k-1)} \\
& =\frac{S S R(\text { full })-S S R(\text { reduced })}{q M S E(\text { full })} \\
& \stackrel{H_{0}}{\sim} F(q, n-k-1)
\end{aligned}
$$

Theorem 8.4d, page 201

$$
\begin{aligned}
F^{*} & =\frac{S S R(\text { full })-S S R(\text { reduced })}{q M S E} \\
& =\frac{(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t})^{\prime}\left(\mathbf{C}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{C}^{\prime}\right)^{-1}(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t})}{q M S E}
\end{aligned}
$$

Proved using matrix-valued Lagrange multipliers. Proof omitted. This result does not depend on the model having an intercept.

Strength of Relationship: Change in R^{2} is not enough

$$
\begin{aligned}
F^{*} & =\frac{\left(R^{2}(\text { full })-R^{2}(\text { reduced })\right) / q}{\left(1-R^{2}(\text { full })\right) /(n-k-1)} \\
& =\left(\frac{n-k-1}{q}\right)\left(\frac{p}{1-p}\right)
\end{aligned}
$$

Where

$$
p=\frac{R^{2}(\text { full })-R^{2}(\text { reduced })}{1-R^{2}(\text { reduced })}=\frac{q F^{*}}{q F^{*}+n-k-1}
$$

Call p the "proportion of remaining variation."

Multiple Testing

- The primary function of hypothesis testing in science is to screen out random garbage.
- Hold probability of Type I error to a low value; $\alpha=0.05$ is traditional.
- The distribution theory considers each test in isolation.
- But in practice, we carry out lots of tests on a given data set.
- If the data are complete random noise, the chance of getting at least one statistically significant result is quite high.
- For ten independent tests, $1-0.95^{10} \approx 0.40$. But the tests are usually not independent.

Bonferroni Correction for Multiple Tests

- The curse of a thousand t-tests.
- If the null hypotheses of a collection of tests are all true, hold the probability of rejecting one or more to less than $\alpha=0.05$.
- Based on Bonferroni's inequality:

$$
\operatorname{Pr}\left\{\bigcup_{j=1}^{r} A_{j}\right\} \leq \sum_{j=1}^{r} \operatorname{Pr}\left\{A_{j}\right\}
$$

- Applies to any collection of r tests.
- Assume all r null hypotheses are true.
- Event A_{j} is that null hypothesis j is rejected.
- Do the tests as usual, obtaining r test statistics.
- For each test, use the significance level α / r instead of α.

Use the significance level α / r instead of α

Bonferroni Correction for r Tests

Assuming all r null hypotheses are true, probability of rejecting at least one is

$$
\begin{aligned}
\operatorname{Pr}\left\{\bigcup_{j=1}^{r} A_{j}\right\} & \leq \sum_{j=1}^{r} \operatorname{Pr}\left\{A_{j}\right\} \\
& =\sum_{j=1}^{r} \alpha / r \\
& =\alpha
\end{aligned}
$$

- Just use critical value(s) for α / r instead of α.
- Or equivalently, multiply the p-values by r and compare to $\alpha=0.05$.
- Call $\alpha=0.05$ the joint significance level.

Example

Most (all?) regression software produces

- Overall F-test for all the explanatory variables at once: $H_{0}: \beta_{1}=\beta_{2}=\cdots=\beta_{k}=0$
- t-tests for each regression coefficient, with $H_{0}: \beta_{j}=0$ for $j=1, \ldots, k$.

Analysis strategy: First look at the F-test.

- If H_{0} is rejected, it means at least one of the β_{j} are not zero, but which one(s)?
- Now look at the t-tests.
- But protect them with a Bonferroni correction for k tests.
- With six predictor variables and $n=53$, so $n-k-1=53-6-1=46$,
$>$ alpha $=0.05$
> qt(1-alpha/2,46) \# Unprotected critical value.
[1] 2.012896
> a = alpha/6 \# Protect for 6 tests
> qt(1-a/2,46) \# Bonferroni protected critical value.
[1] 2.757175

Advantages and disadvantages of the Bonferroni correction

- Advantage: Flexibility - Applies to any collection of hypothesis tests.
- Advantage: Easy to do.
- Disadvantage: Must know what all the tests are before seeing the data.
- Disadvantage: A little conservative; the true joint significance level is less than α.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IATEX}_{\mathrm{E}}$ source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/302f20

