Regression Diagnostics ${ }^{1}$ STA302 Fall 2020

${ }^{1}$ See last slide for copyright information.

Overview

(1) Residuals and Hat Values
(2) Residual Plots
(3) Autocorrelated errors

4 Outlier detection
(5) Normality
(6) Influential Observations

$\widehat{\boldsymbol{\epsilon}}$ estimates $\boldsymbol{\epsilon}$.

- If $\widehat{\boldsymbol{\epsilon}}$ does not act like $\boldsymbol{\epsilon}$ should, investigate.
- Perhaps fix the model or the data.

$\widehat{\boldsymbol{\epsilon}}$ estimates $\boldsymbol{\epsilon}$?

```
yi}=\mp@subsup{\beta}{0}{}+\mp@subsup{\beta}{1}{}\mp@subsup{x}{i1}{}+\cdots+\mp@subsup{\beta}{k}{}\mp@subsup{x}{ik}{}+\mp@subsup{\epsilon}{i}{
```

- First of all, it's a little strange because $\boldsymbol{\epsilon}$ is random.
- But they are analogous.
- $\widehat{\epsilon}_{i}$ are vertical distances of the y_{i} from the estimated regression plane.
- ϵ_{i} are vertical distances of the y_{i} from the true regression plane.
- The vector of residuals is defined as

$$
\begin{aligned}
& \quad \begin{array}{l}
\widehat{\boldsymbol{\epsilon}}=\mathbf{y}-\widehat{\mathbf{y}}=\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}} \\
\mathbf{y}=\mathbf{X} \widehat{\boldsymbol{\beta}}+\widehat{\boldsymbol{\epsilon}} \\
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
\end{array}
\end{aligned}
$$

- Is it a good estimate?

Distribution: $\boldsymbol{\epsilon} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right), \widehat{\epsilon} \sim N_{n}\left(\mathbf{0}, \sigma^{2}\left(\mathbf{I}_{n}-\mathbf{H}\right)\right)$

- Both are multivariate normal with expected value zero.
- $\widehat{\epsilon}_{i}$ do not have equal variance.
- $\widehat{\epsilon}_{i}$ are not independent.
- It's not as bad as it seems, because most of \mathbf{H} goes to zero as $n \rightarrow \infty$.

Is $\widehat{\epsilon}_{i}$ close to ϵ_{i} ? Look at $\widehat{\boldsymbol{\epsilon}}-\boldsymbol{\epsilon}$.

- $\widehat{\boldsymbol{\epsilon}}-\boldsymbol{\epsilon}$ is multivariate normal.
- $E(\widehat{\boldsymbol{\epsilon}}-\boldsymbol{\epsilon})=\mathbf{0}-\mathbf{0}=\mathbf{0}$.

$$
\begin{aligned}
\operatorname{cov}(\widehat{\boldsymbol{\epsilon}}-\boldsymbol{\epsilon}) & =\operatorname{cov}(\mathbf{y}-\widehat{\mathbf{y}}-\boldsymbol{\epsilon}) \\
& =\operatorname{cov}(\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}-\widehat{\mathbf{y}}-\boldsymbol{\epsilon}) \\
& =\operatorname{cov}(\mathbf{X} \boldsymbol{\beta}-\widehat{\mathbf{y}}) \\
& =\operatorname{cov}(-\widehat{\mathbf{y}}) \\
& =\operatorname{cov}(-\widehat{\mathbf{y}},-\widehat{\mathbf{y}}) \\
& =\operatorname{cov}(\widehat{\mathbf{y}}) \\
& =\sigma^{2} \mathbf{H}
\end{aligned}
$$

$\widehat{\boldsymbol{\epsilon}}-\boldsymbol{\epsilon} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbf{H}\right)$

- Denoting \mathbf{H} by $\left[h_{i j}\right], \operatorname{Var}\left(\widehat{\epsilon}_{i}-\epsilon_{i}\right)=\sigma^{2} h_{i i}$.
- Diagonal elements $h_{i i}$ of the hat matrix are sometimes called "hat values."
- Most of the hat values are small. Recall

$$
\begin{aligned}
\operatorname{tr}(\mathbf{H}) & =\operatorname{tr}\left(\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}\right) \\
& =\operatorname{tr}\left(\mathbf{X}^{\prime} \mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right) \\
& =\operatorname{tr}\left(\mathbf{I}_{k+1}\right) \\
& =k+1
\end{aligned}
$$

- So $\sum_{i=1}^{n} h_{i i}=k+1$ even as n increases.
- The average hat value goes to zero.
- For large samples, $\operatorname{Var}\left(\widehat{\epsilon}_{i}-\epsilon_{i}\right)=\sigma^{2} h_{i i}$ is very small most of the time, and $\widehat{\epsilon}_{i}$ is probably close to ϵ_{i}.

How about Independence?

- $\operatorname{cov}(\widehat{\boldsymbol{\epsilon}})=\sigma^{2}\left(\mathbf{I}_{n}-\mathbf{H}\right)$, so the residuals are not independent.
- Let the $n \times 1$ vector \mathbf{v}_{j} be all zeros except for a one in position j.
- Construct a selection matrix: the $n \times 2$ partitioned matrix

$$
\mathbf{S}=\left(\mathbf{v}_{i} \mid \mathbf{v}_{j}\right)
$$

$$
\mathbf{S}^{\prime} \mathbf{H S}=\left(\begin{array}{ll}
h_{i i} & h_{i j} \\
h_{i j} & h_{j j}
\end{array}\right)=\mathbf{M}
$$

- \mathbf{M} is non-negative definite because $\mathbf{a}^{\prime} \mathbf{M a}=\mathbf{a}^{\prime} \mathbf{S}^{\prime} \mathbf{H S a}=(\mathbf{S a})^{\prime} \mathbf{H}(\mathbf{S a})=\mathbf{v}^{\prime} \mathbf{H v} \geq 0$.
- So the eigenvalues of \mathbf{M} are ≥ 0.
- $\Longrightarrow|\mathbf{M}|=h_{i i} h_{j j}-h_{i j}^{2} \geq 0$.
- $\Longrightarrow h_{i i} h_{j j} \geq h_{i j}^{2}$.
- $\Longrightarrow\left|h_{i j}\right| \leq \sqrt{h_{i i} h_{j j}}$
- And $h_{i j} \rightarrow 0$ if either $h_{i i} \rightarrow 0$ or $h_{j j} \rightarrow 0$.

Conclusion: For large samples,

- $\widehat{\epsilon}_{i}$ is a good approximation of ϵ_{i}, as long as $h_{i i}$ is small.
- $\widehat{\epsilon}_{i}$ and $\widehat{\epsilon}_{j}$ are almost independent if either $h_{i i}$ is small or $h_{j j}$ is small (or both).
- In this case, the $\widehat{\epsilon}_{i}$ should behave very much like the ϵ_{i} if the model is correct.
- This is the basis of residual plots, where $\widehat{\epsilon}_{i}$ are treated as if they were ϵ_{i}.

Another good thing about small hat values
 Theorem 5.1 on p. 106 of Sen and Srivastava's Regression Analysis

If $\lim _{n \rightarrow \infty} \max _{i} h_{i i}=0$, then the distribution of $\widehat{\boldsymbol{\beta}}$ approaches a multivariate normal $N_{k+1}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)$, even if the distribution of the ϵ_{i} is not normal.

In this case, tests and confidence intervals based on the normal distribution are roughly okay for large samples (details omitted).

What is a "small" hat value?

- Because \mathbf{H} is non-negative definite, $h_{i i} \geq 0$.
- Because $\mathbf{I}-\mathbf{H}$ is non-negative definite, $1-h_{i i} \geq 0 \Longleftrightarrow h_{i i} \leq 1$.
- So mathematically, $0 \leq h_{i i} \leq 1$.
- Rule of thumb: Worry about $h_{i i}>\frac{2(k+1)}{n}$ (Page 236).
- Another rule of thumb (for multivariate normality of $\widehat{\boldsymbol{\beta}}$) is worry about $h_{i i}>0.2$.
- Or just look at a histogram of hat values (Page 236).

What causes large $h_{i i}$ values?

- They correspond to multivariate outliers in the x variables.
- The hat value $h_{i i}$ is an increasing function of the distance from the vector \mathbf{x}_{i}^{\prime} and the vector of sample means $\left(1, \overline{\mathbf{x}}_{1}, \overline{\mathbf{x}}_{2}, \ldots, \overline{\mathbf{x}}_{k}\right)^{\prime}$.
- See Theorem 9.2 (iii) on p. 231.

Multivariate outliers can be hard to spot

Hidden Outlier

Leverage

Hat values $h_{i i}$ are sometimes called "leverage" values

Easy Moral of the Story

- Start by checking for large hat values.
- Look for $h_{i i}>\frac{2(k+1)}{n}$ or $h_{i i}>0.2$.
- Plots are useful - maybe just a histogram.
- If hat values are big, look at the x values.
- If the hat values are okay, start looking at residuals.

Plotting residuals can be helpful

- Against predicted y.
- Against explanatory variables not in the equation.
- Against explanatory variables in the equation.
- Against time.
- Look for serious departures from normality, outliers.

Plot Residuals Against Explanatory Variables Not in the Equation

True model has both X_{1} and X_{2}

Plot Residuals Against \widehat{y}

Suspect Curvilinear Relationship with one or more X variables

Plot Residuals Against Explanatory Variables in the Equation

Plot versus X_{1} showed nothing

Detect Curvilinear Relationship with X_{2}

Plot Residuals Against Predicted y

Can show non-constant variance

Detect non-constant variance

Plot Residuals Against Explanatory Variables in the Equation

Can show non-constant variance

Detect Variance Increasing with X_{1}

Faraway has some suggestions

- Plot \widehat{y} by $|\widehat{\epsilon}|$, making change in spread easier to see.
- Do a regression with $x=\widehat{y}$ and $y=|\widehat{\epsilon}|$, and look at the test of $H_{0}: \beta_{1}=0$.
- If the model is correct, \widehat{y} and $|\hat{\epsilon}|$ should be independent.
- The distribution theory behind the test does not quite work, but it can give a rough indication to supplement your inspection of the plots.

Plot Residuals Against Time, if the data are time ordered

- You really need to watch out for time ordered data.
- Regression methods from this course may not be appropriate.
- The problem is that ϵ represents all other variables that are left out of the regression equation.
- Some of them could be time dependent.
- This would make the ϵ_{i} non-independent, possibly yielding misleading results.

Plot Residuals Against Time

There should be no visible pattern

Plot of time by residual from model with $E(y \mid \mathbf{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$

Plot Residuals Against Time

There should be no visible pattern

Plot of time by residual from model with $E(y \mid \mathbf{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$

It's not always so easy

Plot of time by residual from model with $E(y \mid x)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$

- Looks like an increasing trend. We will include time in the model.
- But it's not always so clear.
- A test would be nice.
- The key is that the higher $\widehat{\epsilon}_{t}$ is, the higher $\widehat{\epsilon}_{t+1}$ tends to be.
- This is typical of many time series structures, not just trends.

Lagged variables
 Assume the observations (cases) are ordered in time

- The value of a variable lag one is the value of the variable one time period ago.
- Like yesterday's high temperature.
- The value of a variable lag six is the value of the variable six time periods ago.
- Regression with lagged x variables (and maybe un-lagged as well) is a natural thing to do.
- If a lagged x variable is related to y, it could be called a "leading indicator."
- Like a leading indicator of number of deaths from covid-19 could be number of covid-19 infections four weeks ago.

Lagged Residuals

Residual	Residual Lag One
$\widehat{\epsilon}_{1}$	NA
$\widehat{\epsilon}_{2}$	$\widehat{\epsilon}_{1}$
$\widehat{\epsilon}_{3}$	$\widehat{\epsilon}_{2}$
$\widehat{\epsilon}_{4}$	$\widehat{\epsilon}_{3}$
\vdots	\vdots
$\widehat{\epsilon}_{n-1}$	$\widehat{\epsilon}_{n-2}$
$\widehat{\epsilon}_{n}$	$\widehat{\epsilon}_{n-1}$

Compute the sample correlation.

Sample autocorrelation

- Correlation between a variable and its lag one is called an autocorrelation.
- Specifically, the first order autocorrelation.
- Correlation with lag 2 is the second order autocorrelation, etc.
- The sample autocorrelation is an estimate of the population autocorrelation.
- Of the ϵ_{i} values, not just the $\widehat{\epsilon}_{i}$.
- Can reveal lack of independence.
- The most common form is positive autocorrelation.
- The colder is was yesterday, the colder it will probably be today.

The Durbin-Watson Statistic

Assuming the data are in time order

$$
d=\frac{\sum_{i=1}^{n}\left(\hat{\epsilon}_{i}-\hat{\epsilon}_{i-1}\right)^{2}}{\sum_{i=2}^{n} \hat{\epsilon}_{i}^{2}}
$$

If successive $\widehat{\epsilon}_{i}$ are too close together, d will be small.

More about Durbin-Watson

$$
d=\frac{\sum_{i=1}^{n}\left(\hat{\epsilon}_{i}-\hat{\epsilon}_{i-1}\right)^{2}}{\sum_{i=2}^{n} \hat{\epsilon}_{i}^{2}}
$$

- $d \approx 2(1-\widehat{\rho})$, where $\widehat{\rho}$ is the sample autocorrelation of the residuals.
- $d=2$ means zero autocorrelation.
- $0 \leq d \leq 4$.
- Small values of d mean positive autocorrelation.
- Rule of thumb is worry if $d<1$.

Positive autocorrelation

When the ϵ_{i} values are positively autocorrelated,

- $\widehat{\boldsymbol{\beta}}$ is still unbiased and consistent.
- But $M S E$ underestimate σ^{2}.
- Confidence intervals and prediction intervals are too narrow.
- Tests are too likely to reject a true null hypothesis.
- The Durbin-Watson test is really useful.

Back to the Example

Plot of time by residual from model with $E(y \mid \mathbf{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$

Original Model

```
> tmod1 = lm(Y~ X1+X2)
> # Only need to install package once
> # install.packages("lmtest", dependencies=TRUE)
> # Wow, a lot of stuff.
> library(lmtest)
> # help(dwtest)
> dwtest(tmod1)
Durbin-Watson test
data: tmod1
\(D W=0.74561, p\)-value \(=1.106 e-10\)
alternative hypothesis: true autocorrelation is greater than 0
```


Add Time to the Model

```
> tmod2 = lm(Y~ X1+X2+Time); Residual2 = residuals(tmod2)
> summary(tmod2)
Call:
lm(formula = Y ~ X1 + X2 + Time)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-13.5978 & -4.4346 & 0.0868 & 3.8548 & 14.2158
\end{tabular}
Coefficients:
Estimate Std. Error \(t\) value \(\operatorname{Pr}(>|t|)\)
\begin{tabular}{lllll} 
(Intercept) & 3.89219 & 3.74819 & 1.038 & 0.302
\end{tabular}
X1 \(1.04889 \quad 0.07201 \quad 14.567<2 e-16 * * *\)
X2 -0.99279 \(0.06939-14.308<2 \mathrm{e}-16 * * *\)
Time \(0.21564 \quad 0.0206510 .443 \quad<2 \mathrm{e}-16\) ***
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.11
Residual standard error: 5.916 on 96 degrees of freedom Multiple R-squared: 0.7921,Adjusted R-squared: 0.7856 F-statistic: 121.9 on 3 and 96 DF, p-value: < \(2.2 \mathrm{e}-16\)
```


Plot Residuals Against Time

> plot(Time,Residual2,ylab = 'Residual from Model 2')
> lines(Time,Residual2)
> tstring $=$ expression(paste('Plot of time by residual from model with
$+\mathrm{E}\left(\left.\mathrm{y}\right|^{\prime}, \operatorname{bold}(\mathrm{x}),{ }^{\prime}\right)=$, beta[0]+beta[1]*x[1]+beta[2]*x[2]+beta[3]*t))
> title(tstring)
Plot of time by residual from model with $E(y \mid x)=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} t$

Durbin-Watson

```
> dwtest(tmod2)
Durbin-Watson test
data: tmod2
DW = 1.5432, p-value = 0.007792
alternative hypothesis: true autocorrelation is greater than 0
```


Try a Cubic in Time

```
> # Okay, maybe a cubic
> Time2 = Time^2; Time3 = Time^3
> tmod3 = lm(Y~ X1+X2+Time+Time2+Time3)
> Residual3 = residuals(tmod3)
> anova(tmod2,tmod3)
Analysis of Variance Table
Model 1: Y ~ X1 + X2 + Time
Model 2: Y ~ X1 + X2 + Time + Time2 + Time3
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 96 3359.9
2 94 2928.4 2 431.54 6.926 0.001563 **
Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
```


Summary

```
> summary(tmod3)
```

Call:
$\operatorname{lm}(f o r m u l a=Y \sim X 1+X 2+T i m e+T i m e 2+T i m e 3)$

Residuals:

Min	$1 Q$	Median	3Q	Max
-12.3439	-3.6473	0.1622	3.4106	12.5547

Coefficients:

$$
\text { Estimate Std. Error } t \text { value } \operatorname{Pr}(>|t|)
$$

| (Intercept) | $1.183 \mathrm{e}+01$ | $4.225 \mathrm{e}+00$ | 2.801 | $0.006192 * *$ |
| :--- | ---: | :--- | ---: | ---: | :--- |
| X1 | $1.081 \mathrm{e}+00$ | $6.857 \mathrm{e}-02$ | 15.770 | $<2 \mathrm{e}-16$ *** |
| X2 | $-1.040 \mathrm{e}+00$ | $6.692 \mathrm{e}-02$ | -15.539 | $<2 \mathrm{e}-16$ *** |
| Time | $-5.288 \mathrm{e}-01$ | $2.018 \mathrm{e}-01$ | -2.621 | $0.010238 *$ |
| Time2 | $1.702 \mathrm{e}-02$ | $4.614 \mathrm{e}-03$ | 3.688 | $0.000378 * * *$ |
| Time3 | $-1.064 \mathrm{e}-04$ | $2.993 \mathrm{e}-05$ | -3.556 | 0.000591 *** |

Signif. codes: $0 * * * 0.001$ ** $0.01 * 0.05$. 0.11
Residual standard error: 5.582 on 94 degrees of freedom Multiple R-squared: 0.8188,Adjusted R-squared: 0.8091 F-statistic: 84.94 on 5 and 94 DF, p-value: $<2.2 \mathrm{e}-16$

Plot Residuals

> plot(Time,Residual3,ylab = 'Residual from Model 3')
> lines(Time,Residual3)
$>$ tstring $=$ expression(paste('E(y|',bold(x),
$\left.+^{\prime}\right)=$, , beta[0]+beta[1]*x[1]+beta[2]*x[2]+beta[3]*t+beta[4]*t^2+beta[5]*t^3))
> title(tstring)

Durbin-Watson Test

```
dwtest(tmod3)
Durbin-Watson test
data: tmod3
DW = 1.7636, p-value = 0.06464
alternative hypothesis: true autocorrelation is greater than 0
```


Watch Out

- Including time in the model is primitive, but effective if all you have is a trend.
- You really do have to be careful about using ordinary least squares regression on time series data.
- With positive autocorrelation, each observation tends to be close to the last one, and they can drift.

Trend, or Drift?

Trend, or Drift?

Trend, or Drift?

Related?

Related?

Random walk

Sometimes called Drunkard's walk

- Take a step left or right at random.
- Steps could be of variable length.
- Location at time t depends on location at time $t-1$.

$$
X_{t}=X_{t-1}+\epsilon_{t}
$$

$\epsilon_{1}, \epsilon_{2}, \ldots$ all independent and identically distributed.

Correlations: 50 pairs of independent random walks, $n=1000$ steps

Need around $|r|=0.13$ for significance

-0.28175	-0.22242	-0.32170	-0.45053	0.07866	0.59167	-0.27414	-0.82570
-0.62175	0.43537	0.84147	0.04103	-0.17502	-0.89710	-0.19116	-0.53865
-0.50889	0.42855	-0.91074	0.90577	0.22818	0.84834	-0.52501	0.82583
-0.06838	-0.00234	0.16084	0.81393	-0.07063	-0.09908	-0.38405	-0.28510
0.24850	0.12445	0.33509	0.33586	0.41241	-0.33482	-0.32021	-0.73808
0.14045	-0.03618	-0.67757	0.81121	-0.39379	-0.58832	-0.26866	0.16687
0.38541	0.12433						

If you do ordinary regression on time series data

- Plot the residuals against time.
- Look at the Durbin-Watson test.
- Try to include relevant time-varying predictor variables.
- Learn about genuine time series methods (STA457).
- If you study time series, don't stick your nose up at univariate time series methods. Apply them to the residuals!

Outlier detection

- Big residuals may be outliers. What's "big?"
- Consider standardizing.
- But note that variances of $\widehat{\epsilon}_{i}$ are not all the same.
- Semi-Studentized: Estimate $\operatorname{Var}\left(\widehat{\epsilon}_{i}\right)$ and divide by square root of that: $\frac{\widehat{\epsilon}_{i}}{\sqrt{M S E\left(1-h_{i, i}\right)}}$
- In R , this is produced with rstandard.

Studentized deleted residuals

The idea

- An outlier will make $M S E$ big.
- In that case, the standardized (Semi-Studentized) residual $\frac{\widehat{\epsilon}_{i}}{\sqrt{M S E\left(1-h_{i, i}\right)}}$ will be too small - less noticeable.
- So calculate \widehat{y} for each observation based on all the other observations, but not that one. Leave one out.
- Predict each observed y based on all the others, and assess error of prediction (divided by standard error).
- Big values suggest that the expected value of y_{i} is not what it should be.
- Maybe that observation is from a different domain - investigate.

Apply prediction interval technology

$$
t=\frac{y_{0}-\mathbf{x}_{0}^{\prime} \widehat{\boldsymbol{\beta}}}{\sqrt{M S E\left(1+\mathbf{x}_{0}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{0}\right)}} \sim t(n-k-1)
$$

- Note that y_{i} is now being called y_{0}.
- If the "prediction" is too far off there is trouble.
- Use t as a test statistic.
- Need to change the notation.

Studentized deleted residual

$$
t_{i}=\frac{y_{i}-\mathbf{x}_{i}^{\prime} \widehat{\boldsymbol{\beta}}_{(i)}}{\sqrt{M S E_{(i)}\left(1+\mathbf{x}_{i}^{\prime}\left(\mathbf{X}_{(i)}^{\prime} \mathbf{X}_{(i)}\right)^{-1} \mathbf{x}_{i}\right)}} \sim t(n-k-2)
$$

- In R, this is produced with rstudent.
- There is a more efficient formula.
- Use t_{i} as a test statistic of $H_{0}: E\left(y_{i}\right)=\mathbf{x}_{i}^{\prime} \boldsymbol{\beta}$.
- If H_{0} is rejected, investigate.
- We are doing n tests.
- If all null hypotheses are true (no outliers), there is still a good chance of rejection at least one H_{0}.
- Type I errors are very time consuming and disturbing.
- How about a Bonferroni correction?

Bonferroni Correction for Multiple Tests

- Do the tests as usual, obtaining n test statistics.
- For each test, use the significance level α / n instead of α.
- Use the critical value $t_{\frac{\alpha}{2 n}}(n-k-2)$.
- Even for large n it is not overly conservative.
- If you locate an outlier, investigate!

Normality

- Instead of checking the residuals for normality, I like to check the Studentized deleted residuals (rstudent).
- Their variances are all equal.
- And for a healthy sample size, t is almost z.
- Start with hist().

QQ Plots

- Plot ordered values of a variable against the expected values of the order statistics under normality.
- If the distribution is normal, the plot should be approximately straight line.

qqnorm

```
> help(qqnorm)
> x1 = rnorm(400)
> qqnorm(x1); qqline(x1)
```


The Shapiro-Wilk Test for Normality

```
> help(shapiro.test)
> shapiro.test(x1)
Shapiro-Wilk normality test
data: x1
W = 0.99574, p-value = 0.3527
```


Non-normal data

```
> x2 = rexp(400)
> qqnorm(x2); qqline(x2)
```

Normal Q-Q Plot

Test for Normality

x 2 is exponential

```
> shapiro.test(x2)
Shapiro-Wilk normality test
data: x2
W = 0.81528, p-value < 2.2e-16
```


Influential Observations

- Based on the idea of leverage, look for large hat values $h_{i i}$. - If $h_{i i}>0.2$ or $h_{i i}>\frac{2(k+1)}{n}$, investigate.
- Other methods are based on leave-one-out technology.

Leave One Out

- DFBETA $=\widehat{\boldsymbol{\beta}}-\widehat{\boldsymbol{\beta}}_{(i)}=\frac{\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{i} \widehat{\epsilon}_{i}}{1-h_{i i}}$.
- DFBETAS: Use t_{i} instead of $\widehat{\epsilon}_{i}$.
- DFFIT $=\widehat{y}_{i}-\widehat{y}_{(i)}=\frac{h_{i i} \hat{\epsilon}_{i}}{1-h_{i i}}$.
- DFFITS: Use t_{i} instead of $\widehat{\epsilon}_{i}$.
- Cook's distance: $D_{i}=\frac{\sum_{i=1}^{n}\left(\widehat{y}_{i}-\widehat{y}_{(i)}\right)^{2}}{M S E(k+1)}=\left(\frac{1}{k+1}\right) t_{i}^{2}\left(\frac{h_{i i}}{1-h_{i i}}\right)$.
- They say worry about $D_{i}>1$.
- If any of these measures is a lot bigger than the others, investigate.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IATEX}_{\mathrm{E}}$ source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/302f20

