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1See last slide for copyright information.
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Residuals and Hat Values

ε̂ estimates ε.

If ε̂ does not act like ε should, investigate.

Perhaps fix the model or the data.
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Residuals and Hat Values

ε̂ estimates ε?
yi = β0 + β1xi1 + · · ·+ βkxik + εi

First of all, it’s a little strange because ε is random.

But they are analogous.

ε̂i are vertical distances of the yi from the estimated regression
plane.
εi are vertical distances of the yi from the true regression plane.

The vector of residuals is defined as

ε̂ = y − ŷ = y −Xβ̂

⇒ y = Xβ̂ + ε̂

Compare y = Xβ + ε

Is it a good estimate?
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Residuals and Hat Values

Distribution: ε ∼ Nn(0, σ
2In), ε̂ ∼ Nn(0, σ

2(In −H))

Both are multivariate normal with expected value zero.

ε̂i do not have equal variance.

ε̂i are not independent.

It’s not as bad as it seems, because most of H goes to zero as
n→∞.
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Residuals and Hat Values

Is ε̂i close to εi? Look at ε̂− ε.

ε̂− ε is multivariate normal.

E(ε̂− ε) = 0− 0 = 0.

cov(ε̂− ε) = cov(y − ŷ − ε)

= cov(Xβ + ε− ŷ − ε)

= cov(Xβ − ŷ)

= cov(−ŷ)

= cov(−ŷ,−ŷ)

= cov(ŷ)

= σ2H
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Residuals and Hat Values

ε̂− ε ∼ Nn(0, σ
2H)

Denoting H by [hij ], V ar(ε̂i − εi) = σ2hii.

Diagonal elements hii of the hat matrix are sometimes called “hat
values.”

Most of the hat values are small. Recall

tr(H) = tr
(
X(X′X)−1X′

)
= tr

(
X′X(X′X)−1

)
= tr

(
I
k+1

)
= k + 1

So
∑n

i=1 hii = k + 1 even as n increases.

The average hat value goes to zero.

For large samples, V ar(ε̂i − εi) = σ2hii is very small most of the
time, and ε̂i is probably close to εi.
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Residuals and Hat Values

How about Independence?

cov(ε̂) = σ2(In −H), so the residuals are not independent.

Let the n× 1 vector vj be all zeros except for a one in position j.

Construct a selection matrix: the n× 2 partitioned matrix
S = (vi|vj).

S′HS =

(
hii hij
hij hjj

)
= M

M is non-negative definite because
a′Ma = a′S′HSa = (Sa)′H(Sa) = v′Hv ≥ 0.

So the eigenvalues of M are ≥ 0.

=⇒ |M| = hiihjj − h2ij ≥ 0.

=⇒ hiihjj ≥ h2ij .
=⇒ |hij | ≤

√
hiihjj

And hij → 0 if either hii → 0 or hjj → 0.
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Residuals and Hat Values

Conclusion: For large samples,

ε̂i is a good approximation of εi, as long as hii is small.

ε̂i and ε̂j are almost independent if either hii is small or hjj is
small (or both).

In this case, the ε̂i should behave very much like the εi if the
model is correct.

This is the basis of residual plots, where ε̂i are treated as if they
were εi.
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Residuals and Hat Values

Another good thing about small hat values
Theorem 5.1 on p. 106 of Sen and Srivastava’s Regression Analysis

If lim
n→∞

max
i
hii = 0, then the distribution of β̂ approaches a

multivariate normal Nk+1(β, σ
2(X′X)−1), even if the distribution of

the εi is not normal.

In this case, tests and confidence intervals based on the normal
distribution are roughly okay for large samples (details omitted).
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Residuals and Hat Values

What is a “small” hat value?

Because H is non-negative definite, hii ≥ 0.

Because I−H is non-negative definite, 1− hii ≥ 0 ⇐⇒ hii ≤ 1.

So mathematically, 0 ≤ hii ≤ 1.

Rule of thumb: Worry about hii >
2(k+1)
n (Page 236).

Another rule of thumb (for multivariate normality of β̂) is worry
about hii > 0.2.

Or just look at a histogram of hat values (Page 236).
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Residuals and Hat Values

What causes large hii values?

They correspond to multivariate outliers in the x variables.

The hat value hii is an increasing function of the distance from the
vector x′i and the vector of sample means (1,x1,x2, . . . ,xk)

′.

See Theorem 9.2 (iii) on p. 231.
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Residuals and Hat Values

Multivariate outliers can be hard to spot
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Residuals and Hat Values

Leverage
Hat values hii are sometimes called “leverage” values
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Residuals and Hat Values

Easy Moral of the Story

Start by checking for large hat values.

Look for hii >
2(k+1)
n or hii > 0.2.

Plots are useful – maybe just a histogram.

If hat values are big, look at the x values.

If the hat values are okay, start looking at residuals.
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Residual Plots

Plotting residuals can be helpful

Against predicted y.

Against explanatory variables not in the equation.

Against explanatory variables in the equation.

Against time.

Look for serious departures from normality, outliers.
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Residual Plots

Plot Residuals Against Explanatory Variables Not in
the Equation
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Residual Plots

Plot Residuals Against ŷ
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Residual Plots

Plot Residuals Against Explanatory Variables in the
Equation
Plot versus X1 showed nothing
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Residual Plots

Plot Residuals Against Predicted y
Can show non-constant variance
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Residual Plots

Plot Residuals Against Explanatory Variables in the
Equation
Can show non-constant variance
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Residual Plots

Faraway has some suggestions
Linear models with R

Plot ŷ by |ε̂|, making change in spread easier to see.

Do a regression with x = ŷ and y = |ε̂|, and look at the test of
H0 : β1 = 0.

If the model is correct, ŷ and |ε̂| should be independent.

The distribution theory behind the test does not quite work, but it
can give a rough indication to supplement your inspection of the
plots.
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Residual Plots

Plot Residuals Against Time, if the data are time
ordered

You really need to watch out for time ordered data.

Regression methods from this course may not be appropriate.

The problem is that ε represents all other variables that are left
out of the regression equation.

Some of them could be time dependent.

This would make the εi non-independent, possibly yielding
misleading results.
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Residual Plots

Plot Residuals Against Time
There should be no visible pattern
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Plot of time by residual from model with E(y|x) = β0 + β1x1 + β2x2
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Residual Plots

Plot Residuals Against Time
There should be no visible pattern
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Plot of time by residual from model with E(y|x) = β0 + β1x1 + β2x2
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Autocorrelated errors

It’s not always so easy

0 20 40 60 80 100

-1
0

0
10

20

Time

R
es
id
ua
l

Plot of time by residual from model with E(y|x) = β0 + β1x1 + β2x2 Looks like an increasing trend.
We will include time in the
model.

But it’s not always so clear.

A test would be nice.

The key is that the higher ε̂t
is, the higher ε̂t+1 tends to be.

This is typical of many time
series structures, not just
trends.
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Autocorrelated errors

Lagged variables
Assume the observations (cases) are ordered in time

The value of a variable lag one is the value of the variable one time
period ago.

Like yesterday’s high temperature.

The value of a variable lag six is the value of the variable six time
periods ago.

Regression with lagged x variables (and maybe un-lagged as well)
is a natural thing to do.

If a lagged x variable is related to y, it could be called a “leading
indicator.”

Like a leading indicator of number of deaths from covid-19 could
be number of covid-19 infections four weeks ago.
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Autocorrelated errors

Lagged Residuals

Residual Residual Lag One

ε̂1 NA

ε̂2 ε̂1

ε̂3 ε̂2

ε̂4 ε̂3
...

...

ε̂n−1 ε̂n−2

ε̂n ε̂n−1

Compute the sample correlation.
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Autocorrelated errors

Sample autocorrelation

Correlation between a variable and its lag one is called an
autocorrelation.

Specifically, the first order autocorrelation.

Correlation with lag 2 is the second order autocorrelation, etc.

The sample autocorrelation is an estimate of the population
autocorrelation.

Of the εi values, not just the ε̂i.

Can reveal lack of independence.

The most common form is positive autocorrelation.

The colder is was yesterday, the colder it will probably be today.
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Autocorrelated errors

The Durbin-Watson Statistic
Assuming the data are in time order

d =

∑n
i=1(ε̂i − ε̂i−1)

2∑n
i=2 ε̂

2
i

If successive ε̂i are too close together, d will be small.
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Autocorrelated errors

More about Durbin-Watson

d =

∑n
i=1(ε̂i − ε̂i−1)2∑n

i=2 ε̂
2
i

d ≈ 2(1− ρ̂), where ρ̂ is the sample autocorrelation of the residuals.

d = 2 means zero autocorrelation.

0 ≤ d ≤ 4.

Small values of d mean positive autocorrelation.

Rule of thumb is worry if d < 1.

31 / 64



Autocorrelated errors

Positive autocorrelation

When the εi values are positively autocorrelated,

β̂ is still unbiased and consistent.

But MSE underestimate σ2.

Confidence intervals and prediction intervals are too narrow.

Tests are too likely to reject a true null hypothesis.

The Durbin-Watson test is really useful.
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Autocorrelated errors

Back to the Example
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Plot of time by residual from model with E(y|x) = β0 + β1x1 + β2x2
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Autocorrelated errors

Original Model

> tmod1 = lm(Y~X1+X2)

> # Only need to install package once

> # install.packages("lmtest", dependencies=TRUE)

> # Wow, a lot of stuff.

> library(lmtest)

> # help(dwtest)

> dwtest(tmod1)

Durbin-Watson test

data: tmod1

DW = 0.74561, p-value = 1.106e-10

alternative hypothesis: true autocorrelation is greater than 0
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Autocorrelated errors

Add Time to the Model

> tmod2 = lm(Y~X1+X2+Time); Residual2 = residuals(tmod2)

> summary(tmod2)

Call:

lm(formula = Y ~ X1 + X2 + Time)

Residuals:

Min 1Q Median 3Q Max

-13.5978 -4.4346 0.0868 3.8548 14.2158

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.89219 3.74819 1.038 0.302

X1 1.04889 0.07201 14.567 <2e-16 ***

X2 -0.99279 0.06939 -14.308 <2e-16 ***

Time 0.21564 0.02065 10.443 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.916 on 96 degrees of freedom

Multiple R-squared: 0.7921,Adjusted R-squared: 0.7856

F-statistic: 121.9 on 3 and 96 DF, p-value: < 2.2e-16

35 / 64



Autocorrelated errors

Plot Residuals Against Time

> plot(Time,Residual2,ylab = ’Residual from Model 2’)

> lines(Time,Residual2)

> tstring = expression(paste(’Plot of time by residual from model with

+ E(y|’,bold(x),’) = ’, beta[0]+beta[1]*x[1]+beta[2]*x[2]+beta[3]*t ))

> title(tstring)
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Autocorrelated errors

Durbin-Watson

> dwtest(tmod2)

Durbin-Watson test

data: tmod2

DW = 1.5432, p-value = 0.007792

alternative hypothesis: true autocorrelation is greater than 0
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Autocorrelated errors

Try a Cubic in Time

> # Okay, maybe a cubic

> Time2 = Time^2; Time3 = Time^3

> tmod3 = lm(Y~X1+X2+Time+Time2+Time3)

> Residual3 = residuals(tmod3)

> anova(tmod2,tmod3)

Analysis of Variance Table

Model 1: Y ~ X1 + X2 + Time

Model 2: Y ~ X1 + X2 + Time + Time2 + Time3

Res.Df RSS Df Sum of Sq F Pr(>F)

1 96 3359.9

2 94 2928.4 2 431.54 6.926 0.001563 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Autocorrelated errors

Summary

> summary(tmod3)

Call:

lm(formula = Y ~ X1 + X2 + Time + Time2 + Time3)

Residuals:

Min 1Q Median 3Q Max

-12.3439 -3.6473 0.1622 3.4106 12.5547

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.183e+01 4.225e+00 2.801 0.006192 **

X1 1.081e+00 6.857e-02 15.770 < 2e-16 ***

X2 -1.040e+00 6.692e-02 -15.539 < 2e-16 ***

Time -5.288e-01 2.018e-01 -2.621 0.010238 *

Time2 1.702e-02 4.614e-03 3.688 0.000378 ***

Time3 -1.064e-04 2.993e-05 -3.556 0.000591 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 5.582 on 94 degrees of freedom

Multiple R-squared: 0.8188,Adjusted R-squared: 0.8091

F-statistic: 84.94 on 5 and 94 DF, p-value: < 2.2e-16
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Autocorrelated errors

Plot Residuals

> plot(Time,Residual3,ylab = ’Residual from Model 3’)

> lines(Time,Residual3)

> tstring = expression(paste(’E(y|’,bold(x),

+ ’) = ’, beta[0]+beta[1]*x[1]+beta[2]*x[2]+beta[3]*t+beta[4]*t^2+beta[5]*t^3))

> title(tstring)
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Autocorrelated errors

Durbin-Watson Test

dwtest(tmod3)

Durbin-Watson test

data: tmod3

DW = 1.7636, p-value = 0.06464

alternative hypothesis: true autocorrelation is greater than 0
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Autocorrelated errors

Watch Out

Including time in the model is primitive, but effective if all you
have is a trend.

You really do have to be careful about using ordinary least squares
regression on time series data.

With positive autocorrelation, each observation tends to be close
to the last one, and they can drift.
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Autocorrelated errors
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Autocorrelated errors
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Autocorrelated errors
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Autocorrelated errors
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Autocorrelated errors
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Autocorrelated errors

Random walk
Sometimes called Drunkard’s walk

Take a step left or right at random.

Steps could be of variable length.

Location at time t depends on location at time t− 1.

Xt = Xt−1 + εt
ε1, ε2, . . . all independent and identically distributed.
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Autocorrelated errors

Correlations: 50 pairs of independent random walks,
n = 1000 steps
Need around |r| = 0.13 for significance

-0.28175 -0.22242 -0.32170 -0.45053 0.07866 0.59167 -0.27414 -0.82570

-0.62175 0.43537 0.84147 0.04103 -0.17502 -0.89710 -0.19116 -0.53865

-0.50889 0.42855 -0.91074 0.90577 0.22818 0.84834 -0.52501 0.82583

-0.06838 -0.00234 0.16084 0.81393 -0.07063 -0.09908 -0.38405 -0.28510

0.24850 0.12445 0.33509 0.33586 0.41241 -0.33482 -0.32021 -0.73808

0.14045 -0.03618 -0.67757 0.81121 -0.39379 -0.58832 -0.26866 0.16687

0.38541 0.12433
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Autocorrelated errors

If you do ordinary regression on time series data

Plot the residuals against time.

Look at the Durbin-Watson test.

Try to include relevant time-varying predictor variables.

Learn about genuine time series methods (STA457).

If you study time series, don’t stick your nose up at univariate
time series methods. Apply them to the residuals!
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Outlier detection

Outlier detection

Big residuals may be outliers. What’s “big?”

Consider standardizing.

But note that variances of ε̂i are not all the same.

Semi-Studentized: Estimate V ar(ε̂i) and divide by square root of
that: ε̂i√

MSE (1−hi,i)

In R, this is produced with rstandard.
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Outlier detection

Studentized deleted residuals
The idea

An outlier will make MSE big.

In that case, the standardized (Semi-Studentized) residual
ε̂i√

MSE (1−hi,i)
will be too small – less noticeable.

So calculate ŷ for each observation based on all the other
observations, but not that one. Leave one out.

Predict each observed y based on all the others, and assess error of
prediction (divided by standard error).

Big values suggest that the expected value of yi is not what it
should be.

Maybe that observation is from a different domain – investigate.
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Outlier detection

Apply prediction interval technology

t =
y0 − x′0β̂√

MSE(1 + x′0(X
′X)−1x0)

∼ t(n− k − 1)

Note that yi is now being called y0.

If the “prediction” is too far off there is trouble.

Use t as a test statistic.

Need to change the notation.
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Outlier detection

Studentized deleted residual

ti =
yi − x′iβ̂(i)√

MSE(i)(1 + x′i(X
′
(i)X(i))−1xi)

∼ t(n− k − 2)

In R, this is produced with rstudent.

There is a more efficient formula.

Use ti as a test statistic of H0 : E(yi) = x′iβ.

If H0 is rejected, investigate.

We are doing n tests.

If all null hypotheses are true (no outliers), there is still a good
chance of rejection at least one H0.

Type I errors are very time consuming and disturbing.

How about a Bonferroni correction?
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Outlier detection

Bonferroni Correction for Multiple Tests

Do the tests as usual, obtaining n test statistics.

For each test, use the significance level α/n instead of α.

Use the critical value t α
2n

(n− k − 2).

Even for large n it is not overly conservative.

If you locate an outlier, investigate!
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Normality

Normality

Instead of checking the residuals for normality, I like to check the
Studentized deleted residuals (rstudent).

Their variances are all equal.

And for a healthy sample size, t is almost z.

Start with hist().
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Normality

QQ Plots

Plot ordered values of a variable against the expected values of the
order statistics under normality.

If the distribution is normal, the plot should be approximately
straight line.
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Normality

qqnorm

> help(qqnorm)

> x1 = rnorm(400)

> qqnorm(x1); qqline(x1)
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Normality

The Shapiro-Wilk Test for Normality

> help(shapiro.test)

> shapiro.test(x1)

Shapiro-Wilk normality test

data: x1

W = 0.99574, p-value = 0.3527
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Normality

Non-normal data

> x2 = rexp(400)

> qqnorm(x2); qqline(x2)
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Normality

Test for Normality
x2 is exponential

> shapiro.test(x2)

Shapiro-Wilk normality test

data: x2

W = 0.81528, p-value < 2.2e-16
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Influential Observations

Influential Observations

Based on the idea of leverage, look for large hat values hii.

If hii > 0.2 or hii >
2(k+1)
n , investigate.

Other methods are based on leave-one-out technology.
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Influential Observations

Leave One Out

DFBETA = β̂ − β̂(i) = (X′X)−1xiε̂i
1−hii .

DFBETAS: Use ti instead of ε̂i.

DFFIT = ŷi − ŷ(i) = hiiε̂i
1−hii .

DFFITS: Use ti instead of ε̂i.

Cook’s distance: Di =
∑n
i=1(ŷi−ŷ(i))

2

MSE(k+1) =
(

1
k+1

)
t2i

(
hii

1−hii

)
.

They say worry about Di > 1.

If any of these measures is a lot bigger than the others, investigate.
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Influential Observations

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistics, University of Toronto. It is licensed under a Creative
Commons Attribution - ShareAlike 3.0 Unported License. Use any part
of it as you like and share the result freely. The LATEX source code is
available from the course website:
http://www.utstat.toronto.edu/∼brunner/oldclass/302f20
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