Centered Explanatory Variables¹ STA302 Fall 2020

 $^{^1 \}mathrm{See}$ last slide for copyright information.

1 The Centered Model

2 Estimation and Testing

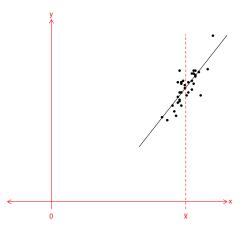
Center the explanatory variables

By subtracting off the sample mean

- Replace x_{ij} with $x_{ij} \overline{x}_j$, expressing each explanatory variable as a deviation from its mean.
- Can be useful at times.

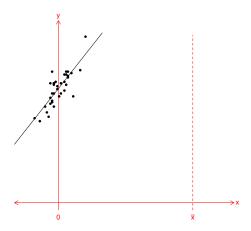
Simple Regression

Centering x by subtracting off \overline{x}

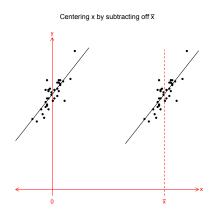


Simple Regression

Centering x by subtracting off \overline{x}

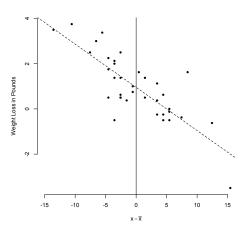


It looks like



- Estimated slopes will be unaffected.
- Estimated intercepts *will* be affected.
- \hat{y}_i should be unaffected.
- $\hat{\epsilon}_i$ should be unaffected.
- If so, prediction intervals and R^2 should be unaffected.
- And tests for slopes should be unaffected.

Interpretation



- Having the y axis go through the data can make the intercept more meaningful.
- Suppose x is age, and y is weight loss in an exercise program.
- Question: Is any weight loss to be expected for a person of average age?
- $H_0: \beta_0 = 0$ is tested automatically.
- Testing $H_0: \beta_0 + \beta_1 \overline{x} = 0$ requires more effort.

The Model for Simple Regression

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

= $\beta_0 + \beta_1 x_i - \beta_1 \overline{x} + \beta_1 \overline{x} + \epsilon_i$
= $(\beta_0 + \beta_1 \overline{x}) + \beta_1 (x_i - \overline{x}) + \epsilon_i$
= $\alpha_0 + \alpha_1 (x_i - \overline{x}) + \epsilon_i$

The intercept is affected by centering, but the slope is not.

Center all the predictor variables

$$y_i = \beta_0 + \beta_1 x_{i,1} + \dots + \beta_k x_{i,k} + \epsilon_i$$

= $\beta_0 + \beta_1 \overline{x}_1 + \dots + \beta_k \overline{x}_k$
+ $\beta_1 (x_{i,1} - \overline{x}_1) + \dots + \beta_k (x_{i,k} - \overline{x}_k) + \epsilon_i$
= $\alpha_0 + \alpha_1 (x_{i,1} - \overline{x}_1) + \dots + \alpha_k (x_{i,k} - \overline{x}_k) + \epsilon_i$

with

$$\alpha_0 = \beta_0 + \beta_1 \overline{x}_1 + \dots + \beta_k \overline{x}_k$$

$$\alpha_j = \beta_j \text{ for } j = 1, \dots, k$$

• The intercept is affected by centering, but the slopes are not.

٠

• You don't have to center all the x variables.

Dummy Variable Regression

Just center the covariate(s)

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 d_{i,1} + \beta_3 d_{i,2} + \epsilon_i$$

= $\beta_0 + \beta_1 x_i - \beta_1 \overline{x} + \beta_1 \overline{x} + \beta_2 d_{i,1} + \beta_3 d_{i,2} + \epsilon_i$
= $(\beta_0 + \beta_1 \overline{x}) + \beta_1 (x_i - \overline{x}) + \beta_2 d_{i,1} + \beta_3 d_{i,2} + \epsilon_i$
= $\alpha_0 + \alpha_1 (x_i - \overline{x}) + \alpha_2 d_{i,1} + \alpha_3 d_{i,2} + \epsilon_i$

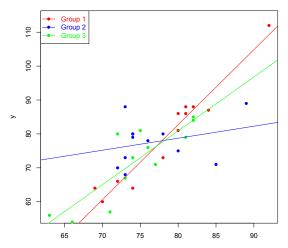
Slopes are not affected by centering.

Parallel Regression Lines

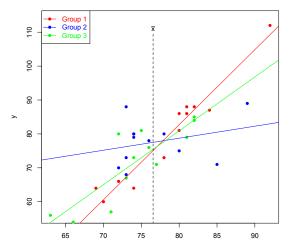
Drug	d_1	d_2	$E(y \mathbf{x}) = \alpha_0 + \alpha_1(x - \overline{x}) + \alpha_2 d_1 + \alpha_3 d_2$
А	1	0	$(\alpha_0 + \alpha_2) + \alpha_1(x - \overline{x})$
В	0	1	$(\alpha_0 + \alpha_3) + \alpha_1(x - \overline{x})$
Placebo	0	0	$\alpha_0 + \alpha_1(x - \overline{x})$

Could describe the estimated intercepts as "adjusted means," or "corrected means."

Interactions



Interactions



Interactions

Group	d_1	d_2	$E(y \mathbf{x})$
1	1	0	$(\beta_0 + \beta_2) + (\beta_1 + \beta_4)(x - \overline{x})$
2	0	1	$(\beta_0 + \beta_3) + (\beta_1 + \beta_5)(x - \overline{x})$
3	0	0	$\beta_0 + \beta_1 (x - \overline{x})$

• What happens at $x = \overline{x}$?

• If you are interested in estimating or testing for differences at some other point, it might be easiest to subtract that value from x instead.

Estimation and Testing

■ Have
$\alpha_0 = \beta_0 + \beta_1 \overline{x}_1 + \dots + \beta_k \overline{x}_k.$
$\alpha_j = \beta_j$ for $j = 1, \dots, k$
■ Will have
$\widehat{\alpha}_0 = \widehat{\beta}_0 + \widehat{\beta}_1 \overline{x}_1 + \dots + \widehat{\beta}_k \overline{x}_k.$
$\widehat{\alpha}_j = \widehat{\beta}_j \text{ for } j = 1, \dots, k$
$\widehat{\mathbf{y}}$ will be unaffected.
$\widehat{\epsilon}$ will be unaffected.
– Dradiction intervals and P^2 will be

- Prediction intervals and R^2 will be unaffected.
- Tests for slopes will be unaffected.

Re-parameterization

■ The mapping

$$\alpha_0 = \beta_0 + \beta_1 \overline{x}_1 + \dots + \beta_k \overline{x}_k$$

$$\alpha_j = \beta_j \text{ for } j = 1, \dots, k$$

is a one-to-one re-parameterization.

- Furthermore, it's linear.
- Write as matrix multiplication.

Matrix Multiplication

To get $\alpha_0 = \beta_0 + \beta_1 \overline{x}_1 + \dots + \beta_k \overline{x}_k$ and $\alpha_j = \beta_j$ for $j = 1, \dots, k$

$$\begin{pmatrix} 1 & \overline{x}_1 & \overline{x}_2 & \cdots & \overline{x}_k \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix} = \begin{pmatrix} \beta_0 + \beta_1 \overline{x}_1 + \cdots + \beta_k \overline{x}_k \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{pmatrix}$$

This matrix \uparrow definitely has an inverse.

Inverse

$$\begin{pmatrix} 1 & -\overline{x}_1 & -\overline{x}_2 & \cdots & -\overline{x}_k \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} 1 & \overline{x}_1 & \overline{x}_2 & \cdots & \overline{x}_k \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

$$\mathbf{A} \qquad \mathbf{A}^{-1} = \mathbf{I}$$

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

$$= \mathbf{X}\mathbf{A}\mathbf{A}^{-1}\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

$$= (\mathbf{X}\mathbf{A})(\mathbf{A}^{-1}\boldsymbol{\beta}) + \boldsymbol{\epsilon}$$

$$= \mathbf{W} \quad \boldsymbol{\alpha} \quad +\boldsymbol{\epsilon},$$

Where \mathbf{W} is the centered \mathbf{X} matrix.

Does the matrix **A** really center the **X** matrix? Just look at row i of **XA**

$$\left(\begin{array}{cccccccc} 1 & x_{i1} & x_{i2} & \cdots & x_{ik} \end{array}\right) \left(\begin{array}{ccccccccccc} 1 & -\overline{x}_1 & -\overline{x}_2 & \cdots & -\overline{x}_k \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{array}\right)$$

One-to-one linear transformation

The point is that centering the explanatory variables is a one-to-one linear transformation of \mathbf{X} matrix: $\mathbf{W} = \mathbf{A}\mathbf{X}$.

$$\mathbf{A} = \begin{pmatrix} 1 & -\overline{x}_1 & -\overline{x}_2 & \cdots & -\overline{x}_k \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

Centering Just Some of the Variables

$$\begin{pmatrix} 1 & x_{i1} & x_{i2} & \cdots & x_{ik} \end{pmatrix} \begin{pmatrix} 1 & -\overline{x}_1 & -\overline{x}_2 & \cdots & -\overline{x}_k \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

- To leave variable j uncentered, replace \overline{x}_j with zero.
- Rows are still linearly independent.

We have been here before

See Assignment 9, Problem 4

$$\mathbf{y} = \mathbf{X}oldsymbol{eta} + oldsymbol{\epsilon}$$
 $\iff \mathbf{y} = \mathbf{X}\mathbf{A}\mathbf{A}^{-1}oldsymbol{eta} + oldsymbol{\epsilon}$
 $\iff \mathbf{y} = \mathbf{W}oldsymbol{lpha} + oldsymbol{\epsilon}$

$$\widehat{\boldsymbol{\alpha}} = (\mathbf{W}'\mathbf{W})^{-1}\mathbf{W}'\mathbf{y}$$

$$= ((\mathbf{X}\mathbf{A})'\mathbf{X}\mathbf{A})^{-1}(\mathbf{X}\mathbf{A})'\mathbf{y}$$

$$= (\mathbf{A}'\mathbf{X}'\mathbf{X}\mathbf{A})^{-1}\mathbf{A}'\mathbf{X}'\mathbf{y}$$

$$= \mathbf{A}^{-1}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{A}'^{-1}\mathbf{A}'\mathbf{X}'\mathbf{y}$$

$$= \mathbf{A}^{-1}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$$

$$= \mathbf{A}^{-1}\widehat{\boldsymbol{\beta}}$$

$$\widehat{oldsymbol{lpha}} = \mathbf{A}^{-1}\widehat{oldsymbol{eta}}$$

Same form as $\alpha = \mathbf{A}^{-1} \boldsymbol{\beta}$: Invariance

$$\begin{pmatrix} \widehat{\alpha}_0\\ \widehat{\alpha}_1\\ \widehat{\alpha}_2\\ \vdots\\ \widehat{\alpha}_k \end{pmatrix} = \begin{pmatrix} 1 & \overline{x}_1 & \overline{x}_2 & \cdots & \overline{x}_k\\ 0 & 1 & 0 & \cdots & 0\\ 0 & 0 & 1 & \cdots & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} \widehat{\beta}_0\\ \widehat{\beta}_1\\ \widehat{\beta}_2\\ \vdots\\ \widehat{\beta}_k \end{pmatrix} = \begin{pmatrix} \widehat{\beta}_0 + \widehat{\beta}_1 \overline{x}_1 + \cdots + \widehat{\beta}_k \overline{x}_k \\ \widehat{\beta}_1\\ \widehat{\beta}_2\\ \vdots\\ \widehat{\beta}_k \end{pmatrix}$$

Predicted **y** for $\mathbf{y} = \mathbf{W}\boldsymbol{\alpha} + \boldsymbol{\epsilon}$

$$\begin{split} \mathbf{W} \widehat{\boldsymbol{\alpha}} &= (\mathbf{X} \mathbf{A}) (\mathbf{A}^{-1} \widehat{\boldsymbol{\beta}}) \\ &= \mathbf{X} \widehat{\boldsymbol{\beta}} \\ &= \widehat{\mathbf{y}} \end{split}$$

- **So** $\hat{\mathbf{y}}$ is unchanged by centering.
- This means $\hat{\epsilon}$, *SSE*, *MSE* and R^2 are also unchanged.

Prediction Intervals are unchanged $\mathbf{x}'_{0}\hat{\boldsymbol{\beta}} \pm t_{\alpha/2}\sqrt{MSE(1+\mathbf{x}'_{0}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_{0})}$

The key is that you need to give it a vector of centered x variables: $\mathbf{x}_0^{*\prime} = \mathbf{x}_0' \mathbf{A} \iff \mathbf{x}_0^* = \mathbf{A}' \mathbf{x}_0$.

$$\begin{aligned} \mathbf{x}_{0}^{*'} \widehat{\mathbf{\alpha}} \pm t_{\alpha/2} \sqrt{MSE(1 + \mathbf{x}_{0}^{*'} (\mathbf{W}'\mathbf{W})^{-1} \mathbf{x}_{0}^{*})} \\ &= (\mathbf{x}_{0}' \mathbf{A}) (\mathbf{A}^{-1} \widehat{\boldsymbol{\beta}}) \pm t_{\alpha/2} \sqrt{MSE(1 + \mathbf{x}_{0}' \mathbf{A} (\mathbf{W}'\mathbf{W})^{-1} \mathbf{A}' \mathbf{x}_{0})} \\ &= \mathbf{x}_{0}' \widehat{\boldsymbol{\beta}} \pm t_{\alpha/2} \sqrt{MSE(1 + \mathbf{x}_{0}' \mathbf{A} ((\mathbf{X}\mathbf{A})'\mathbf{X}\mathbf{A})^{-1} \mathbf{A}' \mathbf{x}_{0})} \\ &= \mathbf{x}_{0}' \widehat{\boldsymbol{\beta}} \pm t_{\alpha/2} \sqrt{MSE(1 + \mathbf{x}_{0}' \mathbf{A} (\mathbf{A}'\mathbf{X}'\mathbf{X}\mathbf{A})^{-1} \mathbf{A}' \mathbf{x}_{0})} \\ &= \mathbf{x}_{0}' \widehat{\boldsymbol{\beta}} \pm t_{\alpha/2} \sqrt{MSE(1 + \mathbf{x}_{0}' \mathbf{A} \mathbf{A}^{-1} (\mathbf{X}'\mathbf{X})^{-1} \mathbf{A}'^{-1} \mathbf{A}' \mathbf{x}_{0})} \\ &= \mathbf{x}_{0}' \widehat{\boldsymbol{\beta}} \pm t_{\alpha/2} \sqrt{MSE(1 + \mathbf{x}_{0}' (\mathbf{X}'\mathbf{X})^{-1} \mathbf{x}_{0})} \end{aligned}$$

Hypothesis tests: $H_0: \mathbf{C}\boldsymbol{\beta} = \mathbf{t}$ Using $F^* = \frac{(\mathbf{C}\hat{\boldsymbol{\beta}}-\mathbf{t})'(\mathbf{C}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{C}')^{-1}(\mathbf{C}\hat{\boldsymbol{\beta}}-\mathbf{t})}{q\,MSE}$

$$\mathbf{C}\boldsymbol{\beta} = \mathbf{t} \quad \Longleftrightarrow \quad (\mathbf{C}\mathbf{A})(\mathbf{A}^{-1}\boldsymbol{\beta}) = \mathbf{t}$$
$$\iff \quad (\mathbf{C}\mathbf{A})\boldsymbol{\alpha} = \mathbf{t}$$

Look at the numerator of F^* for the centered data.

$$\begin{aligned} (\mathbf{C}\mathbf{A}\widehat{\alpha} - \mathbf{t})'(\mathbf{C}\mathbf{A}(\mathbf{W}'\mathbf{W})^{-1}(\mathbf{C}\mathbf{A})')^{-1}(\mathbf{C}\mathbf{A}\widehat{\alpha} - \mathbf{t}) \\ &= (\mathbf{C}\mathbf{A}\mathbf{A}^{-1}\widehat{\beta} - \mathbf{t})'(\mathbf{C}\mathbf{A}(\mathbf{W}'\mathbf{W})^{-1}\mathbf{A}'\mathbf{C}')^{-1}(\mathbf{C}\mathbf{A}\mathbf{A}^{-1}\widehat{\beta} - \mathbf{t}) \\ &= (\mathbf{C}\widehat{\beta} - \mathbf{t})'(\mathbf{C}\mathbf{A}\mathbf{A}^{-1}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{A}'^{-1}\mathbf{A}'\mathbf{C}')^{-1}(\mathbf{C}\widehat{\beta} - \mathbf{t}) \\ &= (\mathbf{C}\widehat{\beta} - \mathbf{t})'(\mathbf{C}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{C}')^{-1}(\mathbf{C}\widehat{\beta} - \mathbf{t}) \end{aligned}$$

- This is the numerator for the uncentered data, so the test statistics are equal.
- If the hypothesis does not involve α_0 , you don't need to transform **C**.

Summary A simple story, in spite of all the technical details

- Centering some or all of the explanatory variables can be helpful.
- Only the intercept is affected.
- There is no effect on predicted y, residuals, R^2 , or prediction intervals.
- There is no effect on tests and confidence intervals, unless the intercept is involved.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/302f20