Categorical Predictor Variables ${ }^{1}$ STA 302 Fall 2020

[^0]
Overview

(1) Indicators with Intercept
(2) Cell means coding
(3) Interactions

Predictor variables need not be continuous

Code data so that $x=1$ means Drug, $x=0$ means Placebo.

- Population mean response is $E(y \mid x)=\beta_{0}+\beta_{1} x$.
- For patients getting the drug, mean response is $E(y \mid x=1)=\beta_{0}+\beta_{1}$.
- For patients getting the placebo, mean response is $E(y \mid x=0)=\beta_{0}$.
- Difference (treatment effect) is β_{1}.
- Test H_{0} : $\beta_{1}=0$.
- Same as the traditional 2-sample test.

Scatterplot

Showing the least-squares line

Predicted response is $\widehat{y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x$.

For patients getting the drug, predicted response is
$\widehat{y}=\widehat{\beta}_{0}+\widehat{\beta}_{1}=\bar{y}_{1}$.

For patients getting the placebo, predicted response is $\widehat{y}=\widehat{\beta}_{0}=\bar{y}_{0}$.

More than Two Categories

Suppose a study has 3 treatment conditions. For example

- Group 1 gets Drug 1
- Group 2 gets Drug 2
- Group 3 gets a placebo
- So that the explanatory variable is Treatment
- Taking values 1,2,3.
- The dependent variable y is response to drug.

Why is $E(y \mid x)=\beta_{0}+\beta_{1} x$ (with $x=$ Treatment) a silly model?

Indicator Dummy Variables

With intercept

- $x_{1}=1$ if Drug A, zero otherwise
- $x_{2}=1$ if Drug B, zero otherwise
- $E(y \mid \boldsymbol{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$.
- Fill in the table.

Drug	x_{1}	x_{2}	$E(y \mid \mathbf{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$
A			$\mu_{1}=$
B			$\mu_{2}=$
Placebo			$\mu_{3}=$

Answer

- $x_{1}=1$ if Drug A, zero otherwise
- $x_{2}=1$ if Drug B, zero otherwise
- $E(y \mid \boldsymbol{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$.

Drug	x_{1}	x_{2}	$E(y \mid \mathbf{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$
A	1	0	$\mu_{1}=\beta_{0}+\beta_{1}$
B	0	1	$\mu_{2}=\beta_{0}+\beta_{2}$
Placebo	0	0	$\mu_{3}=\beta_{0}$

Regression coefficients are contrasts with the category that has no indicator - the reference category.

Indicator dummy variable coding with intercept

- With an intercept in the model, need $r-1$ indicators to represent a categorical explanatory variable with r categories.
- If you use r dummy variables and also an intercept, trouble.
- Indicators would add up to the intercept and columns of \mathbf{X} would be linearly dependent.
- Regression coefficients are contrasts with the category that has no indicator.
- Call this the reference category.

$x_{1}=1$ if Drug A, zero o.w., $x_{2}=1$ if Drug B, zero o.w.

 $\widehat{y}=\widehat{\beta}_{0}+\widehat{\beta}_{1} x_{1}+\widehat{\beta}_{2} x_{2}$Recall $\sum_{i=1}^{n}\left(y_{i}-m\right)^{2}$ is minimized at $m=\bar{y}$

What null hypotheses would you test?

Drug	x_{1}	x_{2}	$E(y \mid \mathbf{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}$
A	1	0	$\mu_{1}=\beta_{0}+\beta_{1}$
B	0	1	$\mu_{2}=\beta_{0}+\beta_{2}$
Placebo	0	0	$\mu_{3}=\beta_{0}$

- Is the effect of Drug A different from the placebo?

$$
H_{0}: \beta_{1}=0
$$

- Is Drug A better than the placebo? $H_{0}: \beta_{1}=0$
- Did Drug B work? $H_{0}: \beta_{2}=0$
- Did experimental treatment have an effect?

$$
H_{0}: \beta_{1}=\beta_{2}=0
$$

- Is there a difference between the effects of $\operatorname{Drug} A$ and Drug B ? $H_{0}: \beta_{1}=\beta_{2}$

Now add a quantitative explanatory variable (covariate)

 Covariates often come first in the regression equation- $x_{1}=1$ if Drug A, zero otherwise
- $x_{2}=1$ if Drug B, zero otherwise
- $x_{3}=$ Age
- $E(y \mid \boldsymbol{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}$.

Drug	x_{1}	x_{2}	$E(y \mid \mathbf{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}$
A	1	0	$\mu_{1}=$
B	0	1	$\mu_{2}=$
Placebo	0	0	$\mu_{3}=$

Drug	x_{1}	x_{2}	$E(y \mid \mathbf{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}$
A	1	0	$\mu_{1}=\left(\beta_{0}+\beta_{1}\right)+\beta_{3} x_{3}$
B	0	1	$\mu_{2}=\left(\beta_{0}+\beta_{2}\right)+\beta_{3} x_{3}$
Placebo	0	0	$\mu_{3}=\beta_{0}+\beta_{3} x_{3}$

Parallel Regression Lines

Drug	x_{1}	x_{2}	$E(y \mid \mathbf{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}$
A	1	0	$\mu_{1}=\left(\beta_{0}+\beta_{1}\right)+\beta_{3} x_{3}$
B	0	1	$\mu_{2}=\left(\beta_{0}+\beta_{2}\right)+\beta_{3} x_{3}$
Placebo	0	0	$\mu_{3}=\beta_{0}+\beta_{3} x_{3}$

Age and Immune Response

Parallel Regression Lines

Drug	x_{1}	x_{2}	$E(y \mid \mathbf{x})$
A	1	0	$\mu_{1}=\left(\beta_{0}+\beta_{1}\right)+\beta_{3} x_{3}$
B	0	1	$\mu_{2}=\left(\beta_{0}+\beta_{2}\right)+\beta_{3} x_{3}$
Placebo	0	0	$\mu_{3}=\quad \beta_{0}+\beta_{3} x_{3}$

For fixed age, is there a difference in expected immune response as a function of experimental treatment? $H_{0}: \beta_{1}=\beta_{2}=0$.

More comments

Drug	x_{1}	x_{2}	$E(y \mid \mathbf{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}$
A	1	0	$\mu_{1}=\left(\beta_{0}+\beta_{1}\right)+\beta_{3} x_{3}$
B	0	1	$\mu_{2}=\left(\beta_{0}+\beta_{2}\right)+\beta_{3} x_{3}$
Placebo	0	0	$\mu_{3}=\beta_{0}+\beta_{3} x_{3}$

- If more than one covariate, parallel regression planes.
- Non-parallel (interaction) is testable.
- "Controlling" interpretation holds.
- In an experimental study, quantitative covariates are usually just observed.
- Could age be related to drug?
- Good covariates reduce $M S E=\frac{\hat{\epsilon}^{\prime} \widehat{\epsilon}}{n-k-1}$, and make tests involving the categorical variables more sensitive.

Cell means coding: r indicators and no intercept

Example: Three treatments and no covariate.

$$
E(y \mid \boldsymbol{x})=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}
$$

Drug	x_{1}	x_{2}	x_{3}	$E(y \mid \mathbf{x})=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}$
A	1	0	0	$\mu_{1}=\beta_{1}$
B	0	1	0	$\mu_{2}=\beta_{2}$
Placebo	0	0	1	$\mu_{3}=\beta_{3}$

- This model is equivalent to the one with $r-1$ dummy variables and the intercept.
- If you have r dummy variables and also the intercept, the model is over-parameterized.

Add a covariate: x_{4}

$E(y \mid \boldsymbol{x})=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4}$

Drug	x_{1}	x_{2}	x_{3}	$E(y \mid \mathbf{x})=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4}$
A	1	0	0	$\beta_{1}+\beta_{4} x_{4}$
B	0	1	0	$\beta_{2}+\beta_{4} x_{4}$
Placebo	0	0	1	$\beta_{3}+\beta_{4} x_{4}$

This model is equivalent to the one with the intercept.

Which one should you use?

Choose on the basis of convenience

Drug	x_{1}	x_{2}	$E(y \mid \mathbf{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}$
A	1	0	$\mu_{1}=\left(\beta_{0}+\beta_{1}\right)+\beta_{3} x_{3}$
B	0	1	$\mu_{2}=\left(\beta_{0}+\beta_{2}\right)+\beta_{3} x_{3}$
Placebo	0	0	$\mu_{3}=\beta_{0}+\beta_{3} x_{3}$

Drug	x_{1}	x_{2}	x_{3}	$E(y \mid \mathbf{x})=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4}$
A	1	0	0	$\beta_{1}+\beta_{4} x_{4}$
B	0	1	0	$\beta_{2}+\beta_{4} x_{4}$
Placebo	0	0	1	$\beta_{3}+\beta_{4} x_{4}$

- Test whether the average response to Drug A is different from the average response to Drug B, controlling for age. What is the null hypothesis? $H_{0}: \beta_{1}=\beta_{2}$.
- Suppose we want to test whether controlling for age, the average response to Drug A and Drug B is different from response to the placebo. What is the null hypothesis for the model with intercept? $H_{0}: \beta_{2}+\beta_{3}=0$.

Huh?

Drug	x_{1}	x_{2}	$E(y \mid \mathbf{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}$
A	1	0	$\mu_{1}=\left(\beta_{0}+\beta_{1}\right)+\beta_{3} x_{3}$
B	0	1	$\mu_{2}=\left(\beta_{0}+\beta_{2}\right)+\beta_{3} x_{3}$
Placebo	0	0	$\mu_{3}=\beta_{0}+\beta_{3} x_{3}$

Controlling for age, is the average response to Drug A and Drug B different from mean response to the placebo? What is the null hypothesis? $H_{0}: \beta_{2}+\beta_{3}=0$. Really? Show your work.

$$
\begin{array}{ll}
& \frac{1}{2}\left[\left(\beta_{0}+\beta_{2}+\beta_{1} x_{1}\right)+\left(\beta_{0}+\beta_{3}+\beta_{1} x_{1}\right)\right]=\beta_{0}+\beta_{1} x_{1} \\
\Longleftrightarrow & \beta_{0}+\beta_{2}+\beta_{1} x_{1}+\beta_{0}+\beta_{3}+\beta_{1} x_{1}=2 \beta_{0}+2 \beta_{1} x_{1} \\
\Longleftrightarrow & 2 \beta_{0}+\beta_{2}+\beta_{3}+2 \beta_{1} x_{1}=2 \beta_{0}+2 \beta_{1} x_{1} \\
\Longleftrightarrow & \beta_{2}+\beta_{3}=0 .
\end{array}
$$

We want to avoid this kind of thing.

Easier with Cell Means Coding

Drug	x_{1}	x_{2}	x_{3}	$E(y \mid \mathbf{x})=\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{4}$
A	1	0	0	$\beta_{1}+\beta_{4} x_{4}$
B	0	1	0	$\beta_{2}+\beta_{4} x_{4}$
Placebo	0	0	1	$\beta_{3}+\beta_{4} x_{4}$

Controlling for age, is the average response to Drug A and Drug B different from mean response to the placebo? What is the null hypothesis?
$H_{0}: \frac{1}{2}\left(\beta_{1}+\beta_{2}\right)=\beta_{3}$, or $H_{0}: \beta_{1}+\beta_{2}=2 \beta_{3}$.

Key to the equivalence of dummy variable coding schemes

Clearly these \mathbf{X} matrices are one-to-one.

$$
\left(\begin{array}{cccc}
1 & 1 & 0 & x_{1} \\
1 & 0 & 1 & x_{2} \\
1 & 0 & 0 & x_{3} \\
1 & 1 & 0 & x_{4} \\
\vdots & \vdots & \vdots & \vdots \\
1 & 0 & 1 & x_{n}
\end{array}\right) \leftrightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & x_{1} \\
0 & 1 & 0 & x_{2} \\
0 & 0 & 1 & x_{3} \\
1 & 0 & 0 & x_{4} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 1 & 0 & x_{n}
\end{array}\right)
$$

And it's a linear transformation.

Matrix multiplication

$$
\left(\begin{array}{cccc}
1 & 1 & 0 & x_{1} \\
1 & 0 & 1 & x_{2} \\
1 & 0 & 0 & x_{3} \\
1 & 1 & 0 & x_{4} \\
\vdots & \vdots & \vdots & \vdots \\
1 & 0 & 1 & x_{n}
\end{array}\right)\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & x_{1} \\
0 & 1 & 0 & x_{2} \\
0 & 0 & 1 & x_{3} \\
1 & 0 & 0 & x_{4} \\
\vdots & \vdots & \vdots & \vdots \\
0 & 1 & 0 & x_{n}
\end{array}\right)
$$

$$
\begin{aligned}
\mathbf{y} & =\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon} \\
\Leftrightarrow \mathbf{y} & =(\mathbf{X A})\left(\mathbf{A}^{-1} \boldsymbol{\beta}\right)+\boldsymbol{\epsilon}
\end{aligned}
$$

Transformed \mathbf{X} implies a transformed $\boldsymbol{\beta}$.

Other 1-1 linear transformations of the predictor variables can be useful

- $x_{1}=$ Verbal SAT, $x_{2}=$ Math SAT, $y=$ First year GPA.
- $w_{1}=x_{1}+x_{2}$ is total SAT score.
- $w_{2}=x_{2}-x_{1}$ is how much better the student did in the math part.
- You might prefer $y_{i}=\beta_{0}+\beta_{1} w_{i, 1}+\beta_{2} w_{i, 2}+\epsilon_{i}$.
- $\left(w_{1}, w_{2}\right)$ is one-to-one with $\left(x_{1}, x_{2}\right)$.
- $\mathbf{y}=(\mathbf{X A})\left(\mathbf{A}^{-1} \boldsymbol{\beta}\right)+\boldsymbol{\epsilon}$.

Interactions

- Interaction between predictor variables means "It depends."
- Relationship between one explanatory variable and the response variable depends on the value of another explanatory variable
- Note that an interaction is not a relationship between explanatory variables (in this course).

General principle

- Interaction between A and B means
- Relationship of A to y depends on value of B.
- Relationship of B to y depends on value of A.
- The two statements are formally equivalent.

Interactions between explanatory variables can be

- Quantitative by quantitative
- Quantitative by categorical
- Categorical by categorical

Quantitative by Quantitative

Represent the interaction by a product of explanatory variables.

$$
\begin{aligned}
y & =\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}+\epsilon \\
E(y \mid \mathbf{x}) & =\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{1} x_{2}
\end{aligned}
$$

For fixed x_{2},

$$
E(y \mid \mathbf{x})=\left(\beta_{0}+\beta_{2} x_{2}\right)+\left(\beta_{1}+\beta_{3} x_{2}\right) x_{1}
$$

- Both slope and intercept depend on value of x_{2}.
- And for fixed x_{1}, slope and intercept relating x_{2} to $E(y)$ depend on the value of x_{1}.
- This interpretation holds only with x_{1} and x_{2} (separately) in the model!

Quantitative by Categorical

- Separate regression line for each value of the categorical explanatory variable.
- Interaction means slopes of regression lines are not equal.

Effect of Treatment Depends on x_{1}

A Single Regression Model

- Form a product of quantitative variable times each dummy variable for the categorical variable.
- For example, three treatments and one covariate: x_{1} is the covariate, and x_{2} and x_{3} are the dummy variables.

$$
\begin{aligned}
y= & \beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3} \\
& +\beta_{4} x_{1} x_{2}+\beta_{5} x_{1} x_{3}+\epsilon
\end{aligned}
$$

- Keep x_{1}, x_{2} and x_{3} (separately) in the model.

Fill in the table

$$
E(y \mid \mathbf{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{1} x_{2}+\beta_{5} x_{1} x_{3}
$$

Treatment	x_{2}	x_{3}	$E(y \mid \mathbf{x})$
Drug A	1	0	
Drug B	0	1	
Placebo	0	0	

Treatment	x_{2}	x_{3}	$E(y \mid \mathbf{x})$
Drug A	1	0	
Drug B	0	1	
Placebo	0	0	

$E(y \mid \mathbf{x})=\beta_{0}+\beta_{1} x_{1}+\beta_{2} x_{2}+\beta_{3} x_{3}+\beta_{4} x_{1} x_{2}+\beta_{5} x_{1} x_{3}$

Treatment	x_{2}	x_{3}	$E(y \mid \mathbf{x})$
Drug A	1	0	$\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{4}\right) x_{1}$
Drug B	0	1	$\left(\beta_{0}+\beta_{3}\right)+\left(\beta_{1}+\beta_{5}\right) x_{1}$
Placebo	0	0	$\beta_{0}+\beta_{1} x_{1}$

Age and Immune Response

Treatment	x_{2}	x_{3}	$E(y \mid \mathbf{x})$
Drug A	1	0	$\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{4}\right) x_{1}$
Drug B	0	1	$\left(\beta_{0}+\beta_{3}\right)+\left(\beta_{1}+\beta_{5}\right) x_{1}$
Placebo	0	0	$\beta_{0}+\beta_{1} x_{1}$

What null hypothesis would you test for

- Equal slopes. $H_{0}: \beta_{4}=\beta_{5}=0$.
- Compare slope for Drug A versus placebo. $H_{0}: \beta_{4}=0$.
- Compare slope for Drug A versus Drug B. $H_{0}: \beta_{4}=\beta_{5}$.
- Equal regressions. $H_{0}: \beta_{2}=\beta 3=\beta_{4}=\beta_{5}=0$.
- Interaction between age and treatment. $H_{0}: \beta_{4}=\beta_{5}=0$.
- Effect of experimental treatment depends on age.
$H_{0}: \beta_{4}=\beta_{5}=0$.
- For patients of average age \bar{x}_{1}, are Drugs A and B equally effective? $\quad H_{0}: \beta_{2}+\beta_{4} \bar{x}_{1}=\beta_{3}+\beta_{5} \bar{x}_{1}$.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IATEX}_{\mathrm{E}}$ source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/302f20

[^0]: ${ }^{1}$ See last slide for copyright information.

