ASsignment Five
(1)

$$
\begin{aligned}
& E(y)=E(X \beta+\varepsilon)=E(X \beta)+E(\varepsilon)=X \beta+0=X \beta \\
& \operatorname{cov}(y)=\operatorname{cov}(X \beta+\varepsilon)=\operatorname{cov}(\varepsilon)=\sigma^{2} I_{n}
\end{aligned}
$$

(2) $\hat{\beta}=\left(x^{\prime} x\right)^{-1} x^{\prime} y$ is $(k+1) \times 1$
(3)

$$
\begin{aligned}
E(\hat{\beta}) & =E\left(\left(x^{\prime} x\right)^{-1} x^{\prime} y\right)=\left(x^{\prime} x\right)^{-1} x^{\prime} E(y) \\
& =\left(x^{\prime} x\right)^{-1} x^{\prime} x \beta=\beta \text {. Yes, un biased. }
\end{aligned}
$$

(4)

$$
\begin{aligned}
\operatorname{cov}(\hat{\beta}) & =\operatorname{cov}\left(\left(x^{\prime} x\right)^{-1} x^{\prime} y\right)=\left(x^{\prime} x\right)^{-1} x^{\prime} \operatorname{cov}(y)\left(\left(x^{\prime} x\right)^{-1} x^{\prime}\right)^{\prime} \\
& =\left(x^{\prime} x\right)^{-1} x^{\prime} \sigma^{2} \operatorname{In} x\left(x^{\prime} x\right)^{-1}=\sigma^{2}\left(x^{\prime} x\right)^{-1} x^{\prime} x\left(x^{\prime} x\right)^{-1} \\
& =\sigma^{2}\left(x^{\prime} x\right)^{-1}
\end{aligned}
$$

(5) $\hat{y}=x \hat{\beta} \quad(n$ by $z+1)+$ imines $(z+\mid$ by $\mid)=n x$)
(6) $E(\hat{\jmath})=E(X \hat{\beta})=X E(\hat{\beta})=X \beta$
(7)

$$
\begin{aligned}
\operatorname{cov}(\hat{\jmath}) & =\operatorname{cov}(x \hat{\beta})=x \operatorname{cov}(\hat{\beta}) x^{\prime}=x \sigma^{2}\left(x^{\prime} x\right)^{-1} x^{\prime} \\
& =\sigma^{2} x\left(x^{\prime} x\right)^{-1} x^{\prime}=\sigma^{2} H
\end{aligned}
$$

(8) $n \times 1$
(9) $E(\hat{\varepsilon})=E(y-\hat{y})=E(y)-E(\hat{y})=x \beta-x \beta=0$
(10)

$$
\begin{aligned}
\operatorname{cov}(\hat{\varepsilon}) & =\operatorname{cov}((I-H) z)=(I-H) \operatorname{cov}(\sigma)(I-H)^{\prime} \\
& =(I-H) \sigma^{2} \operatorname{In}(I-H)=\sigma^{2}(I-H)(I-H) \\
& =\sigma^{2}(I-H)
\end{aligned}
$$

(11) $(a) E(\bar{y})=\mu, \quad \operatorname{Vm}(\bar{y})=\frac{\sigma^{2}}{n}$
(b)

$$
\begin{aligned}
E(L)=\mu & =E\left(\sum_{i=1}^{n} c_{i} Y_{i}\right)=\sum_{i=1}^{n} C_{i} E\left(Y_{i}\right) \\
& =\mu \sum_{i=1}^{n} c_{i}
\end{aligned}
$$

Since L is unbiasal, $\mu=\mu \sum_{i=1}^{n} c_{i}$ is true it panticulan for $\mu=1$, so $\sum_{i=1}^{n} c_{i}=1$.
(c) $\psi_{e} ; c_{i}=\frac{1}{n}$ for $i=1, \ldots, n$.
(d) $\operatorname{Var}(L)=\operatorname{Van}\left(\sum_{i=1}^{n} c_{i} Y_{i}\right) \stackrel{i n d}{\underline{i}} \sum_{i=1}^{n} V_{m}\left(C_{i} Y_{i}\right)=\sum_{i=1}^{n} C_{i}^{2} V_{m}\left(Y_{i}\right)$

$$
=\sum_{i=1}^{n} c_{i}^{2} \sigma^{2}=\sigma^{2} \sum_{i=1}^{n} c_{1}^{2}
$$

(e) So to minimige $V_{m}(L)$, minimige $\sum_{i=1}^{n} C_{i}^{2}$ subject to the constraint $\sum_{i=1}^{n} C_{i}=1$.

$$
\begin{aligned}
& \sum_{i=1}^{n} c_{i}^{2} \stackrel{\mu}{n} \sum_{i=1}^{n}\left(c_{i}-\frac{1}{n}+\frac{1}{n}\right)^{2}=\sum_{i=1}^{n}\left(\left(c_{i}-\frac{1}{n}\right)^{2}+2\left(c_{i}-\frac{1}{n}\right) \frac{1}{n}\right. \\
& \left.+n\left(\frac{1}{n} 2\right)\right) \\
& =\sum_{i=1}^{n}\left(c_{i}-\frac{1}{n}\right)^{2}+2 \cdot \frac{1}{n} \sum_{i=1}^{n}\left(c_{i}-\frac{1}{n}\right)+\frac{1}{n} \\
& =\sum_{i=1}^{n}\left(c_{i}-\frac{1}{n}\right)^{2}+\frac{2}{n}\left(\sum_{i=1}^{n} c_{i}-1\right)+\frac{1}{n}=\sum_{i=1}^{n}\left(c_{i}-\frac{1}{n}\right)^{2}+\frac{1}{n} \\
& L \operatorname{Bec} \sum_{i=1}^{n} c_{i}=1
\end{aligned}
$$

$\geq \frac{1}{n}$, with egcality when $c_{i}=\frac{1}{n}$ for $i=1, \ldots, n$, in which cose $L=\bar{Y}$.
(12) $(a) e^{\prime} \hat{\beta}$
(b) $E\left(l^{\prime} \hat{\beta}\right)=l^{\prime} E(\hat{\beta})=l^{\prime} \beta$
(c)

$$
\begin{aligned}
& l^{\prime} \hat{\beta}=l^{\prime}\left(x^{\prime} x\right)^{-1} x^{\prime} y=c_{0}^{\prime} y \text {, so } \\
& c_{0}=x\left(x^{\prime} x\right)^{-1} l
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \operatorname{Vm}\left(c^{\prime} y\right)=\operatorname{cov}\left(c^{\prime} y\right)=c^{\prime} \operatorname{cov}(y) c=c^{\prime} \sigma^{2} I_{n} c \\
& =\sigma^{2} c^{\prime} c .
\end{aligned}
$$

(e)

$$
\begin{aligned}
& l^{\prime} \beta=E\left(c^{\prime} y\right)=c^{\prime} E(y)=c^{\prime} \times \beta=v^{\prime} \beta \text { fon } \\
& \text { all } \beta \in D^{k}+1
\end{aligned}
$$ all $\beta \in \mathbb{R}^{k+1}$. So in pasticulan, it's tree ba

$$
\beta_{(1)}=(1,0 \cdots 0)^{\prime} \text {, and } l^{\prime} \beta_{(1)}=v^{\prime} \beta_{(1)} \Rightarrow l_{1}=v_{1}
$$

It's the for $\beta_{(2)}=(0,1, \cdots 0)$, so $l_{2}=v_{2}$
It's true for $\beta_{(k+1)}^{\vdots}=(0,0, \ldots, 1)$, so $l_{k+1}=r_{k+1}$ And we have $l=b=\left(c^{\prime} x\right)^{\prime}=x^{\prime} c$ ofed

$$
\text { (f) } \begin{aligned}
& \left(c-c_{0}\right)^{\prime} c_{0}=\left(c-x\left(x^{\prime} x\right)^{-1} l\right)^{\prime} x\left(x^{\prime} x\right)^{-1} l \\
= & \left(c-x\left(x^{\prime} x\right)^{-1} x^{\prime} c\right) x\left(x^{\prime} x\right)^{-1} x^{\prime} c \\
= & (c-H C)^{\prime} H C=\left(C^{\prime}-c^{\prime} H^{\prime}\right) H C \\
= & c^{\prime} H C-c^{\prime} H^{\prime} H C=c^{\prime} H C-c^{\prime} H H C \\
= & C^{\prime} H C-c^{\prime} H C=0
\end{aligned}
$$

$$
\begin{aligned}
& (12 g) c^{\prime} c=\left(c-c_{0}+c_{0}\right)^{\prime}\left(c-c_{0}+c_{0}\right) \\
& =\left(c-c_{0}\right)^{\prime}\left(c-c_{0}\right)+\left(c-c_{0}\right)^{\prime} c_{0}+c_{0}^{\prime}\left(c-c_{0}\right)+c_{0}^{\prime} c_{0} \\
& =\left(c-c_{0}\right)^{\prime}\left(c-c_{0}\right)+2\left(c-c_{0}\right)^{\prime} C_{0}+c_{0}^{\prime} c_{0} \\
& =\left(c-c_{0}\right)^{\prime}\left(c-c_{0}\right)+c_{0} C_{0} \text { and equal as requat (f) }
\end{aligned}
$$

(h) $\left(c-c_{0}\right)^{\prime}\left(c-c_{0}\right)=z^{\prime} z=\sum_{i=1}^{n} \delta_{i}^{2} \geq 0$, and equcals zaa iff $z_{1}=0$, for $i=1, \ldots, n$ iff $z=c-c_{0}=0$ $\Leftrightarrow c=c_{0}$. So the minimum is unigup.
(13) $(a) \tan (\hat{\beta})=\operatorname{Van}\left(\frac{\sum_{i=1}^{n} x_{i} y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}\right)$

$$
\begin{aligned}
& =\frac{1}{\left(\sum x_{i}^{2}\right)^{2}} \operatorname{Vm}\left(\sum_{i=1}^{n} x_{i} y_{i}\right) \stackrel{i n d}{=} \frac{1}{\left(\sum x_{i}^{2}\right)^{2}} \sum_{i=1}^{n} \operatorname{ven}\left(x_{i} y_{i}\right) \\
& =\frac{1}{\left(\sum x_{i}^{2}\right)^{2}} \sum_{i=1}^{n} x_{i}^{2} \operatorname{Vm}\left(y_{i}\right)=\frac{1}{\left(\sum x_{i}^{2}\right)^{2}} \sum_{i=1}^{n} x_{i}^{2} \sigma^{2} \\
& =\frac{\sigma{ }^{2}}{\sum_{i=1}^{n} x_{i}^{2}}
\end{aligned}
$$

(15)

$$
\begin{aligned}
& \text { (i) } E\left(\hat{\beta}_{2}\right)=\frac{1}{\bar{x}} E(\bar{y})=\frac{1}{\bar{x}} E\left(\frac{1}{n} \sum_{i=1}^{n} y_{i}\right) \\
& =\frac{1}{\bar{x}} \frac{1}{n} \sum_{i=1}^{n} E\left(y_{i}\right)=\frac{1}{\bar{x}} \frac{1}{n} \sum_{i=1}^{n} E\left(\beta x_{i}+\varepsilon_{i}\right) \\
& =\frac{1}{\bar{x}} \frac{1}{n} \sum_{i=1}^{n}\left(\beta x_{i}+0\right)=\frac{1}{\bar{x}} \beta \frac{1}{n} \sum_{i=1}^{n} x_{i}=\frac{1}{\bar{x}} \beta \bar{x}
\end{aligned}
$$

$=\beta$ unbiased, as long as $\bar{x} \neq 0$
(ii) Yes, $\hat{\beta}_{2}=\frac{1}{n \bar{x}} \sum_{i=1}^{n} y_{i}=\sum_{i=1}^{n}\left(\frac{1}{n \bar{x}}\right) y_{i}$, so

$$
C_{i}=\frac{1}{n \bar{x}} \quad \text { for } i=1, \ldots, n
$$

(iii) $\operatorname{Vm}\left(\hat{\beta}_{2}\right) \stackrel{\text { ind }}{=} \frac{1}{n^{2} \bar{x}^{2}} \sum_{i=1}^{n} v_{m}\left(y_{i}\right)=\frac{n \sigma^{2}}{n^{2} \bar{x}^{2}}=\frac{\sigma^{2}}{n \bar{x}^{2}}$
(iv) Gauss -Markov Theorem
(v) $\frac{\sigma^{2}}{\sum x_{i}^{2}}=\frac{\sigma^{2}}{n \bar{x}^{2}} \Leftrightarrow \sum_{i=1}^{n} x_{i}^{2}=n \bar{x}^{2}$

All x_{i} avo equal
$(13 c) \quad \hat{\beta}_{3}=\frac{1}{n} \sum_{i=1}^{n} \frac{\gamma_{i}}{x_{i}}$

$$
\text { (i) } \begin{aligned}
E\left(\hat{\beta}_{s}\right) & =\frac{1}{n} \sum_{i=1}^{n} \frac{E\left(y_{i}\right)}{x_{i}}=\frac{1}{n} \sum_{i=1}^{n} \frac{\beta x_{i}}{x_{i}} \\
& =\frac{n \beta}{n}=\beta \quad \text { unbiased as long co }
\end{aligned}
$$

no $x_{1}=0$
(ii) $Y_{s}: c_{i}=\frac{1}{n x_{i}}$
(iii)

$$
\begin{aligned}
& \operatorname{Var}\left(\hat{\beta}_{3}\right)=\frac{1}{n^{2}} \sum_{i=1}^{n} \frac{1}{x_{1}^{2}} \operatorname{Var}\left(y_{1}\right) \\
& =\frac{\sigma^{2}}{n^{2}} \sum_{i=1}^{n} \frac{1}{x_{1}^{2}}
\end{aligned}
$$

(iv) Gauss - Mantov. $\frac{\sigma^{2}}{\sum_{i=1}^{n} x_{i}^{2}} \leqslant \frac{\sigma^{2} \sum_{i=1}^{n} \frac{1}{x_{i}^{2}}}{n^{2}}$
$\Longleftrightarrow \sum_{i=1}^{n} x_{i}^{2} \geq \frac{n^{2}}{\sum_{i=1}^{n} \frac{1}{x^{2}}} \quad$ A strange inequality, new to mes and very harl to prove otherwise.
(v) If all $x_{i}=1$ (had to guess this) then

$$
\hat{\beta}=\hat{\beta}_{3}=\hat{g} .
$$

(14) (a)

$$
\begin{aligned}
H_{v} & =H X b \text {, some } b \in \mathbb{R}^{k+1} \\
& =\frac{\left.X X^{\prime} X\right)^{-\prime} X^{\prime} X}{I} b=X b=v
\end{aligned}
$$

(b) Every element of $x^{\prime} \hat{\varepsilon}=0$
a basis rector,τ is the inner product of a basis rector and \hat{E}.
(c) $v^{\prime} \hat{\varepsilon}=(x b)^{\prime} \hat{\varepsilon}=b^{\prime} x^{\prime} \hat{\varepsilon}=b^{\prime} \underline{\sim}=0$
(d) Tho projection of $\hat{\varepsilon}$ onto O is tho closest point

$$
\begin{aligned}
H \hat{\varepsilon} & =H(y-\hat{y})=H y-H \hat{y}=H y-H H y \\
& =H y-H y=0 \quad \text { Hes. }
\end{aligned}
$$

(e) $E\left(c^{\prime} z\right)=l^{\prime} \beta$ for all $\beta \in \mathbb{R}^{k+1}$ implies $l=x^{\prime} c$, as in $12(e)$. Then

$$
H c=x\left(x^{\prime} x\right)^{-1} \underbrace{x^{\prime} c}_{l}=x\left(x^{\prime} x\right)^{-1} l=c_{0}
$$

Projection is the closest point.
(15) (a)

$$
\begin{aligned}
y_{1} & \sim N\left(\beta_{0}+\beta x_{i}+\cdots+\beta_{k} x_{i k}, \sigma^{2}\right) \\
& =N\left(x_{i}^{\prime} \beta, \sigma^{2}\right)
\end{aligned}
$$

(b) The \log litielihood is $l\left(\beta, \sigma^{2}\right)$

$$
\begin{aligned}
& =\ln \prod_{i=1}^{n} \frac{1}{\sigma \sqrt{2 \pi}} \rho-\frac{1}{2 \sigma^{2}}\left(y_{i}-x_{i}^{\prime} \beta\right)^{2} \\
& =\ln \left(\sigma^{-n}(2 \pi)^{-\frac{n}{2}} e^{\left.-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{\prime} \beta\right)^{2}\right)}\right. \\
& =-n \ln \sigma-\frac{n}{2} \ln 2 \pi-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-x_{i}^{\prime} \beta\right)^{2}
\end{aligned}
$$

To maximize this, maximize this past $\hat{\jmath}$ over β Or equivalently, minimize

$$
Q=\sum_{i=1}^{n}\left(y_{i}-x_{i}^{\prime} \beta\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{1}-\cdots-\beta_{z} x_{i k}\right)^{2}
$$

This in just the least square problem, and it has the same solution.
(15c) We know that for every $\sigma^{2}>0$, the likelihood is maximized at $\beta=\hat{\beta}$. So maximize

$$
\begin{aligned}
& l\left(\hat{\beta}, \sigma^{2}\right)=-\frac{n}{2} \ln \sigma^{2}-\frac{n}{2} \ln (2 \pi)-\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-x, \hat{\beta}\right)^{2} \\
& \left(\sigma^{2}\right)^{-1} \\
& =-\frac{n}{2} \ln \sigma^{2}-\frac{n}{2} \ln (2 \pi-)-\frac{1}{2} \hat{\varepsilon}^{\hat{\varepsilon}}\left(\sigma^{2}\right)^{-1} \text { over } \sigma^{2} \text { ? } \\
& \frac{d l}{\partial \sigma^{2}}=-\frac{n}{2} \frac{1}{\sigma^{2}}-0-\frac{1}{2} \hat{\varepsilon} \hat{\varepsilon}(-1)\left(\sigma^{2}\right)^{-2} \\
& =-\frac{n}{2 \sigma^{2}}+\frac{\hat{\varepsilon}^{\prime} \hat{\varepsilon}}{2 \sigma^{4}} \stackrel{\text { eek }}{=} 0 \Rightarrow n=\frac{\hat{\varepsilon}^{\prime} \varepsilon^{1}}{\sigma^{2}} \\
& \Rightarrow \sigma^{2}=\frac{\hat{\varepsilon}^{\prime} \hat{\varepsilon}}{n} \text {. To check that it's a max, } \\
& \frac{\partial^{2} \rho}{\partial \sigma^{2} 2}=\frac{\partial}{\partial \sigma^{2}}\left(-\frac{n}{2}\left(\sigma^{2}\right)^{-1}+\frac{\bar{\varepsilon}^{\prime} \varepsilon^{\top}}{2}\left(\sigma^{2}\right)^{-2}\right) \\
& =-\frac{n}{2}(-1)\left(\sigma^{2}\right)^{-2}+\frac{\hat{\varepsilon}^{\prime} \varepsilon}{2}(-2)\left(\sigma^{2}\right)^{-3} \\
& =\frac{n}{2 \sigma^{4}}-\frac{\hat{\varepsilon}^{\prime} \hat{\varepsilon}}{\sigma^{6}} \quad \text { Evaluate at } \hat{\sigma}^{2}=\frac{\hat{\varepsilon}^{\prime} \hat{\varepsilon}^{1}}{n} \\
& =\frac{n}{2 \hat{\sigma}^{4}}-\frac{n \hat{\sigma}^{2}}{\hat{\sigma}^{6}}=\frac{n}{2 \hat{\sigma}^{4}}-\frac{n}{\hat{\sigma}^{4}}<0
\end{aligned}
$$

concave down, max.

$$
A^{2}=\frac{\hat{\varepsilon}^{\prime} \hat{\varepsilon}}{4-R-1}, \hat{\sigma}^{2}=\frac{\hat{\varepsilon} \hat{\varepsilon}^{2}}{n}, \quad \frac{{ }_{\sigma}^{2}}{} \text { is biased }
$$

```
> # Q16
> #a) Calculate beta-hat
    [,1]
Intercept 0.6080747411
VERBAL 0.0023070007
MATH 0.0009973607
> #b) Predict GPA for Verbal=600, Math=700
[1] 2.690428
> #c) Mean of yhat and mean of y
[1] 2.6301 2.6301
> #d) epsilon-hat, vector of residuals
> mean(epsilonhat)
[1] -1.657453e-14
> #e) Inner product of yhat and epsilonhat
[,1]
[1,] -8.835738e-12
> #f) Inner product of epsilonhat and total score is zero because total is in
the space spanned by the columns of X
                        [,1]
[1,] -4.190341e-09
```

> \# Q17: Faraway Ch. 2 Exercise 1, page 25.
$>$
> (a) What percentage of variation in the response is explained by these
predictors?
[1] 0.5267234
> \# (b) Which observation has the largest (positive) residual? Give the case
number.
24
94.25222
> \# (c) Compute the mean and median of the residuals.
[1] -3.065293e-17 -1.451392e+00
> \# (d) Compute the correlation of the residuals with the fitted values.
[1] -1.070659e-16
> \# (e) Compute the correlation of the residuals with the income.
[1] -7.242382e-17
> \# (f) For all other predictors held constant, what would be the difference in
predicted expenditure on gambling for a male compared to a female?
sex
-22.11833
> \# 22 pounds LESS for female.

