% 302f20Assignment3.tex Linear algebra and random vectors \documentclass[11pt]{article} %\usepackage{amsbsy} % for \boldsymbol and \pmb \usepackage{graphicx} % To include pdf files! \usepackage{amsmath} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{comment} \usepackage[colorlinks=true, pdfstartview=FitV, linkcolor=blue, citecolor=blue, urlcolor=blue]{hyperref} % For links \usepackage{fullpage} %\pagestyle{empty} % No page numbers \begin{document} %\enlargethispage*{1000 pt} \begin{center} {\Large \textbf{STA 302f20 Assignment Three}}\footnote{This assignment was prepared by \href{http://www.utstat.toronto.edu/~brunner}{Jerry Brunner}, Department of Statistical Sciences, University of Toronto. It is licensed under a \href{http://creativecommons.org/licenses/by-sa/3.0/deed.en_US} {Creative Commons Attribution - ShareAlike 3.0 Unported License}. Use any part of it as you like and share the result freely. The \LaTeX~source code is available from the course website: \href{http://www.utstat.toronto.edu/~brunner/oldclass/302f20} {\small\texttt{http://www.utstat.toronto.edu/$^\sim$brunner/oldclass/302f20}}} \vspace{1 mm} \end{center} \noindent Please do these review questions in preparation for Quiz Three; they are not to be handed in. Use the current formula sheet on the course website. Questions 1-12 are based on material in Chapter 2. Questions 13-25 are based on material in Chapter 3. \vspace{3mm} \begin{enumerate} \item Recall that the \emph{trace} of a square matrix is the sum of diagonal elements. So if $\mathbf{C}=(c_{ij})$ is a $p \times p$ matrix, $tr(\mathbf{C}) = \sum_{j=1}^p c_{jj}$. Let $\mathbf{A}$ be a $p \times q$ constant matrix, and let $\mathbf{B}$ be a $q \times p$ constant matrix, so that $\mathbf{AB}$ and $\mathbf{BA}$ are both defined. Prove $tr(\mathbf{AB}) = tr(\mathbf{BA})$. \item Let $\mathbf{A}$ and $\mathbf{B}$ be square matrices of constants, with $\mathbf{AB}=\mathbf{I}$. Using $|\mathbf{AB}| = |\mathbf{A}| \, |\mathbf{B}|$, prove $\mathbf{BA}=\mathbf{I}$. Thus when you are showing that a matrix is the inverse of another matrix, you only need to multiply them in one direction and get the identity. \item In the textbook, do Problems 2.28, 2.35 and 2.36. % For 2.36 see p. 26 \item In the textbook, do Problem 2.38. It is asking you to show that if the symmetric matrix $\mathbf{A}$ is positive definite, then $\mathbf{A} = \mathbf{P}^\prime\mathbf{P}$ for some non-singular $\mathbf{P}$. \item In the textbook, do Problems 2.53 and 2.76. % For 2.53 see p. 40; for 2.76 p. 53 but it's big in the notes. \item \label{r} Let $\mathbf{A} = \left(\begin{array}{cccc} 1.00 & 0.75 & 0.75 & 0.75 \\ 0.75 & 1.00 & 0.75 & 0.75 \\ 0.75 & 0.75 & 1.00 & 0.75 \\ 0.75 & 0.75 & 0.75 & 1.00 \end{array}\right)$. Enter $\mathbf{A}$ into R using \texttt{rbind}. \begin{enumerate} \item Calculate $|\mathbf{A}^{-1}|$ and $1/|\mathbf{A}|$, verifying that they are equal. \item Calculate $|\mathbf{A}^2|$ and $|\mathbf{A}|^2$, verifying that they are equal. \item Calculate the eigenvalues and eigenvectors of $\mathbf{A}$. \item Calculate $\mathbf{A}^{1/2}$. Multiply the matrix by itself to get $\mathbf{A}$. \item Calculate $\mathbf{A}^{-1/2}$. Multiply the matrix by $\mathbf{A}^{1/2}$ to get the identity. \end{enumerate} Display the creation of $\mathbf{A}$, and also the input and output for each part. Label the output with comments. Be ready to hand in a pdf with the quiz if requested. \begin{comment} # Q6 A = rbind(c(1.00, 0.75, 0.75, 0.75), c(0.75, 1.00, 0.75, 0.75), c(0.75, 0.75, 1.00, 0.75), c(0.75, 0.75, 0.75, 1.00) ); A # a) c(det(solve(A)), 1/det(A)) # b) c(det(A%*%A), det(A)^2) # c) eigen(A) # d) A^{1/2} C = eigen(A)$vectors; D = diag(eigen(A)$values) Ahalf = C %*% sqrt(D) %*% t(C); Ahalf Ahalf %*% Ahalf # Should be A # e) A^{-1/2} Aminushalf = C %*% solve(sqrt(D)) %*% t(C); Aminushalf Aminushalf %*% Ahalf # Should be I \end{comment} \item Let $\mathbf{A}$ be a square matrix. Show that if the columns of $\mathbf{A}$ are linearly dependent, $\mathbf{A}^{-1}$ cannot exist. Hint: $\mathbf{v}$ cannot be both zero and not zero at the same time. \item \label{ss} Let $\mathbf{a}$ be an $n \times 1$ matrix of real constants. How do you know $\mathbf{a}^\prime\mathbf{a}\geq 0$? \pagebreak \item Recall the \emph{spectral decomposition} of a square symmetric matrix (For example, a variance-covariance matrix). Any such matrix $\boldsymbol{\Sigma}$ can be written as $\boldsymbol{\Sigma} = \mathbf{CD} \mathbf{C}^\prime$, where $\mathbf{C}$ is a matrix whose columns are the (orthonormal) eigenvectors of $\boldsymbol{\Sigma}$, $\mathbf{D}$ is a diagonal matrix of the corresponding eigenvalues, and $\mathbf{C}^\prime\mathbf{C} =~\mathbf{C}\mathbf{C}^\prime =~\mathbf{I}$. \begin{enumerate} \item Let $\boldsymbol{\Sigma}$ be a square symmetric matrix with eigenvalues that are all strictly positive. \begin{enumerate} \item What is $\mathbf{D}^{-1}$? \item Show $\boldsymbol{\Sigma}^{-1} = \mathbf{C} \mathbf{D}^{-1} \mathbf{C}^\prime$ \end{enumerate} \item Let $\boldsymbol{\Sigma}$ be a square symmetric matrix, and this time some of the eigenvalues might be zero. \begin{enumerate} \item What do you think $\mathbf{D}^{1/2}$ might be? \item Define $\boldsymbol{\Sigma}^{1/2}$ as $\mathbf{CD}^{1/2} \mathbf{C}^\prime$. Show $\boldsymbol{\Sigma}^{1/2}$ is symmetric. \item Show $\boldsymbol{\Sigma}^{1/2}\boldsymbol{\Sigma}^{1/2} = \boldsymbol{\Sigma}$. \end{enumerate} \item Now return to the situation where the eigenvalues of the square symmetric matrix $\boldsymbol{\Sigma}$ are all strictly positive. Define $\boldsymbol{\Sigma}^{-1/2}$ as $\mathbf{CD}^{-1/2} \mathbf{C}^\prime$, where the elements of the diagonal matrix $\mathbf{D}^{-1/2}$ are the reciprocals of the corresponding elements of $\mathbf{D}^{1/2}$. \begin{enumerate} \item Show that the inverse of $\boldsymbol{\Sigma}^{1/2}$ is $\boldsymbol{\Sigma}^{-1/2}$, justifying the notation. \item Show $\boldsymbol{\Sigma}^{-1/2} \boldsymbol{\Sigma}^{-1/2} = \boldsymbol{\Sigma}^{-1}$. \end{enumerate} \item The (square) matrix $\boldsymbol{\Sigma}$ is said to be \emph{positive definite} if $\mathbf{v}^\prime \boldsymbol{\Sigma} \mathbf{v} > 0$ for all vectors $\mathbf{v} \neq \mathbf{0}$. Show that the eigenvalues of a positive definite matrix are all strictly positive. \item Let $\boldsymbol{\Sigma}$ be a symmetric, positive definite matrix. Putting together a couple of results you have proved above, establish that $\boldsymbol{\Sigma}^{-1}$ exists. \end{enumerate} \item Using the Spectral Decomposition Theorem and $tr(\mathbf{AB})=tr(\mathbf{BA})$, prove that the trace is the sum of the eigenvalues for a symmetric matrix. \item Using the Spectral Decomposition Theorem and $|\mathbf{AB}| = |\mathbf{BA}|$, prove that the determinant of a symmetric matrix is the product of its eigenvalues. \item Prove that the diagonal elements of a positive definite matrix must be positive. Hint: Can you describe a vector $\mathbf{v}$ such that $\mathbf{v}^\prime \mathbf{Av}$ picks out the $j$th diagonal element? \vspace{3mm}\hrule\vspace{3mm} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Random vectors and matrices \item Let $\mathbf{X}$ be a random matrix, and $\mathbf{B}$ be a matrix of constants. Show $E(\mathbf{XB})=E(\mathbf{X})\mathbf{B}$. \item Do Problem 3.10 in the text. \item Let the $p \times 1$ random vector $\mathbf{x}$ have expected value $\boldsymbol{\mu}$ and variance-covariance matrix $\mathbf{\Sigma}$, and let $\mathbf{A}$ be an $m \times p$ matrix of constants. Prove that the variance-covariance matrix of $\mathbf{Ax}$ is either \begin{itemize} \item $\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^\prime$, or \item $\mathbf{A}^2 \boldsymbol{\Sigma}$.. \end{itemize} Pick one and prove it. Start with the definition of a variance-covariance matrix on the formula sheet. If the two expressions are equal, say so. \item Let the $p \times 1$ random vector $\mathbf{y}$ have expected value $\boldsymbol{\mu}$ and variance-covariance matrix $\boldsymbol{\Sigma}$. Find $cov(\mathbf{Ay},\mathbf{By})$, where $A$ and $B$ are matrices of constants. \item Let $\mathbf{x}$ be a $p \times 1$ random vector. Starting with the definition on the formula sheet, prove $cov(\mathbf{x})=\mathbf{0}$.. % FALSE \item Let the $p \times 1$ random vector $\mathbf{x}$ have mean $\boldsymbol{\mu}$ and variance-covariance matrix $\boldsymbol{\Sigma}$, let $\mathbf{A}$ be an $r \times p$ matrix of constants, and let $\mathbf{c}$ be an $r \times 1$ vector of constants. Find $cov(\mathbf{Ax}+\mathbf{c})$. Show your work. \item Comparing the definitions, one can see that viewing a scalar random variable as a $1 \times 1$ random vector, the variance-covariance matrix is just the ordinary variance. Accordingly, let the scalar random variable $Y = \mathbf{v}^\prime \mathbf{x}$, where $\mathbf{x}$ is a $p \times 1$ random vector with covariance matrix $\boldsymbol{\Sigma}$, and $\mathbf{v}$ is a $p \times 1$ vector of constants. What is $Var(Y)$? Why does this tell you that \emph{any} variance-covariance matrix must be positive semi-definite? \item Using definitions on the formula sheet and other material from this assignment, \begin{enumerate} \item Show that the eigenvalues of a variance-covariance matrix cannot be negative. \item How do you know that the determinant of a variance-covariance matrix must be greater than or equal to zero? The answer is one short sentence. \item Let $X$ and $Y$ be scalar random variables. Recall $Corr(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$. Using what you have shown about the determinant, show $-1 \leq Corr(X,Y) \leq 1$. You have just proved the Cauchy-Schwarz inequality. \end{enumerate} \item Let $\mathbf{x}$ be a $p \times 1$ random vector with mean $\boldsymbol{\mu}_x$ and variance-covariance matrix $\mathbf{\Sigma}_x$, and let $\mathbf{y}$ be a $q \times 1$ random vector with mean $\boldsymbol{\mu}_y$ and variance-covariance matrix $\mathbf{\Sigma}_y$. \begin{enumerate} \item What is the $(i,j)$ element of $\boldsymbol{\Sigma}_{xy} = cov(\mathbf{x},\mathbf{y})$? \item Find an expression for $cov(\mathbf{x}+\mathbf{y})$ in terms of $\mathbf{\Sigma}_x$, $\mathbf{\Sigma}_y$ and $\boldsymbol{\Sigma}_{xy}$. Show your work. \item Simplify further for the special case where $Cov(X_i,Y_j)=0$ for all $i$ and $j$. \item Let $\mathbf{c}$ be a $p \times 1$ vector of constants and $\mathbf{d}$ be a $q \times 1$ vector of constants. Find $ cov(\mathbf{x}+\mathbf{c}, \mathbf{y}+\mathbf{d})$. Show your work. \end{enumerate} \item Let the random vectors $\mathbf{x}_1$ and $\mathbf{x}_2$ be $p \times 1$, and the random vectors $\mathbf{y}_1$ and $\mathbf{y}_2$ be $p \times 1$, with $E(\mathbf{x}_1)=\boldsymbol{\mu}_1$, $E(\mathbf{x}_2)=\boldsymbol{\mu}_2$, $E(\mathbf{y}_1)=\boldsymbol{\mu}_3$, $E(\mathbf{y}_2)=\boldsymbol{\mu}_4$. Show that the $p \times q$ matrix of covariances $cov(\mathbf{x}_1+\mathbf{x}_2, \mathbf{y}_1+\mathbf{y}_2) = cov(\mathbf{x}_1,\mathbf{y}_1) + cov(\mathbf{x}_1,\mathbf{y}_2) +cov(\mathbf{x}_2,\mathbf{y}_1) +cov(\mathbf{x}_2,\mathbf{y}_2)$. \item Starting with the definition on the formula sheet, show $cov(\mathbf{x,y})=cov(\mathbf{y,x})$.. % FALSE \item Starting with the definition on the formula sheet, show $cov(\mathbf{x,y})=\mathbf{0}$.. % FALSE \item Do problem 3.20 in the text. The answer is in the back of the book. \end{enumerate} % End all the questions % \vspace{130mm} % How about distribution of y-hat? \end{document} \vspace{3mm}\hrule\vspace{3mm} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # False start on Q6 set.seed(9999) B = rpois(16,5)*2; dim(B) = c(4,4); A = 0.5 * (B + t(B)); A # Pretend I made it up A = rbind(c(14, 12, 20, 6), c(12, 14, 9, 14), c(20, 9, 14, 5), c( 6, 14, 5, 18) ); A # a) c(det(solve(A)), 1/det(A)) # b) c(det(A%*%A), det(A)^2) # c) eigen(A) # d) A^{1/2} C = eigen(A)$vectors; D = diag(eigen(A)$values) Ahalf = C %*% sqrt(D) %*% t(C) Ahalf %*% Ahalf