STA 302f20 Assignment Two ${ }^{1}$

Please do these review questions in preparation for Quiz Two; they are not to be handed in. Use the formula sheet on the course website. Starting with Problem 4, you can play a little game. Try not to do the same work twice. Instead, use results of earlier problems whenever possible.

1. Read Chapter 2 in Linear models in statistics, optionally skipping Sections 2.8 (generalized inverses), 2.13 (idempotent matrices) and 2.14 (vector and matrix calculus). Do problems 2.6a, 2.6d, 2.7b, $2.7 \mathrm{c}, 2.17 \mathrm{c}, 2.17 \mathrm{~d}, 2.20,2.23,2.24$. You should be able to do these problems without reading anything, but the assigned reading will help, soon.
2. Let \mathbf{A} by a non-singular square matrix. Prove that \mathbf{A}^{-1} is unique by letting both \mathbf{B} and \mathbf{C} be inverses of \mathbf{A}, and then showing $\mathbf{B}=\mathbf{C}$.
3. This problem is more review, this time of statistical concepts you encountered in STA260 and probably STA258. Let y_{1}, \ldots, y_{n} be a random sample (that is, independent and identically distributed) from a normal distribution with mean μ and variance σ^{2}, so that $t=\frac{\sqrt{n}(\bar{y}-\mu)}{s} \sim$ $t(n-1)$. This is something you don't need to prove, for now.
(a) Derive a $(1-\alpha) 100 \%$ confidence interval for μ. "Derive" means show all the high school algebra. Use the symbol $t_{1-\alpha / 2}$ for the number satisfying $\operatorname{Pr}\left(T \leq t_{1-\alpha / 2}\right)=1-\alpha / 2$.
(b) A random sample with $n=23$ yields $\bar{y}=2.57$ and a sample variance of $s^{2}=5.85$.
i. Use R to find the critical value $t_{0.975}$.
ii. Give a 95% confidence interval for μ. The answer is a pair of numbers, the lower confidence limit and the upper confidence limit.
(c) Using the sample statistics from Question 3b, test $H_{0}: \mu=3$ versus $H_{1}: \mu \neq 3$ at $\alpha=0.05$.
i. Give the value of the T statistic. The answer is a number.
ii. What is the critical value? The answer is a number.
iii. State whether you reject H_{0}, Yes or No.
iv. What is the p-value? Give the number and the R command that produced it.
v. Can you conclude that μ is different from 3? Answer Yes or No.
vi. If the answer is Yes, state whether $\mu>3$ or $\mu<3$. Pick one.

[^0]4. Denote the moment-generating function of a random variable y by $M_{y}(t)$. The momentgenerating function is defined by $M_{y}(t)=E\left(e^{y t}\right)$.
(a) Let a be a constant. Prove that $M_{a x}(t)=M_{x}(a t)$.
(b) Prove that $M_{x+a}(t)=e^{a t} M_{x}(t)$.
(c) Let x_{1}, \ldots, x_{n} be independent random variables. Prove that
$$
M_{\sum_{i=1}^{n} x_{i}}(t)=\prod_{i=1}^{n} M_{x_{i}}(t) .
$$

Clearly indicate where you use independence.
5. Recall that if $x \sim N\left(\mu, \sigma^{2}\right)$, it has moment-generating function $M_{x}(t)=e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}}$. You will not have to prove this.
(a) Let $x \sim N\left(\mu, \sigma^{2}\right)$ and $y=a x+b$, where a and b are constants. Use moment-generating functions to find the distribution of y. Show your work.
(b) Let $x \sim N\left(\mu, \sigma^{2}\right)$ and $z=\frac{x-\mu}{\sigma}$. Use moment-generating functions to find the distribution of z. Show your work.
(c) Let x_{1}, \ldots, x_{n} be a random sample from a $N\left(\mu, \sigma^{2}\right)$ distribution. Use moment-generating functions to find the distribution of $y=\sum_{i=1}^{n} x_{i}$. Show your work.
(d) Let x_{1}, \ldots, x_{n} be a random sample from a $N\left(\mu, \sigma^{2}\right)$ distribution. Use moment-generating functions to find the distribution of the sample mean \bar{x}.
(e) Let x_{1}, \ldots, x_{n} be a random sample from a $N\left(\mu, \sigma^{2}\right)$ distribution. Find the distribution of $z=\frac{\sqrt{n}(\bar{x}-\mu)}{\sigma}$. Show your work.
(f) Let x_{1}, \ldots, x_{n} be independent random variables, with $x_{i} \sim N\left(\mu_{i}, \sigma_{i}^{2}\right)$. Let a_{0}, \ldots, a_{n} be constants. Use moment-generating functions to find the distribution of $y=a_{0}+$ $\sum_{i=1}^{n} a_{i} x_{i}$. Show your work. This is a big deal, because it establishes that any linear combinations of independent normals is normal. Thus, to find the distribution of any linear combination of independent normals, all you need to do is calculate the expected value and variance.
6. A Chi-squared random variable x with parameter $\nu>0$ has moment-generating function $M_{x}(t)=(1-2 t)^{-\nu / 2}$ for $t<1 / 2$. You will not have to prove this.
(a) Let x_{1}, \ldots, x_{n} be independent random variables with $x_{i} \sim \chi^{2}\left(\nu_{i}\right)$ for $i=1, \ldots, n$. Find the distribution of $y=\sum_{i=1}^{n} x_{i}$.
(b) Let $z \sim N(0,1)$. Find the distribution of $y=z^{2}$ using moment-generating functions. For this one, you need to integrate.
(c) Let x_{1}, \ldots, x_{n} be random sample from a $N\left(\mu, \sigma^{2}\right)$ distribution. Find the distribution of $y=\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}$.
(d) Let $y=x_{1}+x_{2}$, where x_{1} and x_{2} are independent, $x_{2} \sim \chi^{2}\left(\nu_{2}\right)$ and $y \sim \chi^{2}\left(\nu_{1}+\nu_{2}\right)$, where ν_{1} and ν_{2} are both positive. Show $x_{1} \sim \chi^{2}\left(\nu_{1}\right)$.
(e) Let x_{1}, \ldots, x_{n} be random sample from a $N\left(\mu, \sigma^{2}\right)$ distribution. Show

$$
\frac{(n-1) s^{2}}{\sigma^{2}} \sim \chi^{2}(n-1)
$$

where $s^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}{n-1}$. Hint: $\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}+\bar{x}-\mu\right)^{2}=\ldots$
For this question, you may use the independence of \bar{x} and s^{2} without proof. We will prove it later. Note: This is a special case of a central result that will be used throughout most of the course.
7. We return to simple linear regression (see problem 14 from last week). "Simple" means that there is just one explanatory variable. Here's the model. Independently for $i=1, \ldots, n$, let $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$, where β_{0} and β_{1} are unknown constants (parameters), x_{1}, \ldots, x_{n} are a known, observable constants, and $\epsilon_{1}, \ldots, \epsilon_{n}$ are independent random variables with expected value zero and unknown variance σ^{2}.
(a) In least squares estimation, one first writes the expected value of y_{i} as a function of $\boldsymbol{\beta}=\left(\beta_{0}, \beta_{1}\right)$, say $E_{\boldsymbol{\beta}}\left(y_{i}\right)$, and then one estimates the β_{j} by choosing values that get the y_{i} as close as possible to their expected values, in the sense of minimizing $Q(\boldsymbol{\beta})=$ $\sum_{i=1}^{n}\left(y_{i}-E_{\boldsymbol{\beta}}\left(y_{i}\right)\right)^{2}$ over all $\boldsymbol{\beta}$ values. Following this recipe, obtain formulas for the least squares estimates of β_{0} and β_{1}. Don't bother with second derivative tests. There is a better way to verify that you have found the minimum; we will cover it later.
(b) Suppose the ϵ_{i} are normally distributed. Using results from earlier in this assignment, what is the distribution of y_{i} ?
(c) Starting from $\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$, show $\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right) y_{i}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}$.
(d) Using the preceding result,
i. What is the distribution of $\widehat{\beta}_{1}$ if the ϵ_{i} are normal?
ii. What is $\operatorname{Cov}\left(\bar{y}, \widehat{\beta}_{1}\right)$?
iii. What is the distribution of $\widehat{\beta}_{0}=\bar{y}-\widehat{\beta}_{1} \bar{x}$ if the ϵ_{i} are normal?
iv. What is $\operatorname{Cov}\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right)$?
(e) Calculate $\widehat{\beta}_{0}$ and $\widehat{\beta}_{1}$ for the following data set. Your answers are numbers. Use R. You might be asked to use R on the quiz.

$$
\begin{array}{rrrrrrrrr}
\mathrm{x} & 0.0 & 1.3 & 3.2 & -2.5 & -4.6 & -1.6 & 4.5 & 3.8 \\
\mathrm{y} & -0.8 & -1.3 & 7.4 & -5.2 & -6.5 & -4.9 & 9.9 & 7.2
\end{array}
$$

[^0]: ${ }^{1}$ This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{ET}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/~ brunner/oldclass/302f20

