STA 302f20 Assignment One¹

Please do these review questions in preparation for Quiz One; they are not to be handed in. This material will not directly be on the final exam. Use the formula sheet on the course website.

- 1. The discrete random variable X has probability mass function p(x) = |x|/20 for $x = -4, \ldots, 4$ and zero otherwise. Let $Y = X^2 - 1$.
 - (a) What is E(X)? The answer is a number. Show some work.
 - (b) Calculate the variance of X. The answer is a number. My answer is 10.
 - (c) What is P(Y = 8)? My answer is 0.30
 - (d) What is P(Y = -1)? My answer is zero.
 - (e) What is P(Y = -4)? My answer is zero.
 - (f) What is the probability distribution of Y? Give the y values with their probabilities.

У	0	3	8	15
p(y)	0.1	0.2	0.3	0.4

- (g) What is E(Y)? The answer is a number. My answer is 9.
- (h) What is Var(Y)? The answer is a number. My answer is 30.
- 2. This question clarifies the meaning of E(a) and Var(a) when a is a constant.
 - (a) Let X be a discrete random variable with P(X = a) = 1 (later we will call this a *degenerate* random variable). Using the definitions on the formula sheet, calculate E(X) and Var(X). This is the real meaning of the concept.
 - (b) Let a be a real constant and X be a continuous random variable with density f(x). Let Y = g(X) = a. Using the formula for E(g(X)) on the formula sheet, calculate E(Y) and Var(Y). This reminds us that the change of variables formula (which is a very big theorem) applies to the case of a constant function.
- 3. The discrete random variables X and Y have joint distribution

- (a) What is the marginal distribution of X? List the values with their probabilities.
- (b) What is the marginal distribution of Y? List the values with their probabilities.
- (c) Calculate E(X). Show your work.
- (d) What is Var(X)? Show your work.
- (e) Calculate E(Y). Show your work.
- (f) Calculate Var(Y). Show your work. You may use Question 5a if you wish.

¹Copyright information is at the end of the last page.

- (g) Let $Z_1 = g_1(X, Y) = X + Y$. What is the probability distribution of Z_1 ? Show some work.
- (h) Calculate $E(Z_1)$. Show your work.
- (i) Do we have E(X + Y) = E(X) + E(Y)? Answer Yes or No. Note that the answer does not require independence, or even zero covariance.
- (j) Let $Z_2 = g_2(X, Y) = XY$. What is the probability distribution of Z_2 ? List the values with their probabilities. Show some work.
- (k) Calculate $E(Z_2)$. Show your work.
- (1) Do we have E(XY) = E(X)E(Y)? Answer Yes or No.
- (m) Using the well-known formula of Question 5b, what is Cov(X, Y)?
- (n) Are X and Y independent? Answer Yes or No and show some work.
- 4. Let X_1 and X_2 be continuous random variables that are *independent*. Using the expression for $E(g(\mathbf{X}))$ on the formula sheet, show $E(X_1X_2) = E(X_1)E(X_2)$. Draw an arrow to the place in your answer where you use independence, and write "This is where I use independence." Because X_1 and X_2 are continuous, you will need to integrate. Does your proof still apply if X_1 and X_2 are discrete?
- 5. Using the definitions of variance covariance along with the linear property $E(\sum_{i=1}^{n} a_i Y_i) = \sum_{i=1}^{n} a_i E(Y_i)$ (no integrals), show the following:
 - (a) $Var(Y) = E(Y^2) \mu_V^2$
 - (b) Cov(X, Y) = E(XY) E(X)E(Y)
 - (c) If X and Y are independent, Cov(X, Y) = 0. Of course you may use Problem 4.
- 6. Let X be a random variable and a be a constant. Show
 - (a) $Var(aX) = a^2 Var(X)$.
 - (b) Var(X+a) = Var(X).
- 7. Show Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y).
- 8. Let X and Y be random variables, and let a and b be constants. Show Cov(X + a, Y + b) = Cov(X, Y).
- 9. Let X and Y be random variables, with $E(X) = \mu_x$, $E(Y) = \mu_y$, $Var(X) = \sigma_x^2$, $Var(Y) = \sigma_y^2$, $Cov(X, Y) = \sigma_{xy}$ and $Corr(X, Y) = \rho_{xy}$. Let a and b be non-zero constants.
 - (a) Find Cov(aX, Y).
 - (b) Find Corr(aX, Y). Do not forget that a could be negative.
- 10. Let $E(X_1) = \mu_1$, $E(X_2) = \mu_2$, $E(Y_1) = \mu_3$, $E(Y_2) = \mu_4$. Show $Cov(X_1 + X_2, Y_1 + Y_2) = Cov(X_1, Y_1) + Cov(X_1, Y_2) + Cov(X_2, Y_1) + Cov(X_2, Y_2)$.

- 11. Let y_1, \ldots, y_n be numbers (not necessarily random variables), and $\overline{y} = \frac{1}{n} \sum_{i=1}^n y_i$. Show
 - (a) $\sum_{i=1}^{n} (y_i \overline{y}) = 0$
 - (b) $\sum_{i=1}^{n} (y_i \overline{y})^2 = \sum_{i=1}^{n} y_i^2 n\overline{y}^2$
 - (c) The sum of squares $Q_m = \sum_{i=1}^n (y_i m)^2$ is minimized when $m = \overline{y}$.
- 12. Let x_1, \ldots, x_n and y_1, \ldots, y_n be numbers, with $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i$ and $\overline{y} = \frac{1}{n} \sum_{i=1}^n y_i$. Show $\sum_{i=1}^n (x_i \overline{x})(y_i \overline{y}) = \sum_{i=1}^n x_i y_i n\overline{x} \overline{y}$.
- 13. Let Y_1, \ldots, Y_n be independent random variables with $E(Y_i) = \mu$ and $Var(Y_i) = \sigma^2$ for $i = 1, \ldots, n$. For this question, please use definitions and familiar properties of expected value, not integrals or sums.
 - (a) Find $E(\sum_{i=1}^{n} Y_i)$. Are you using independence?
 - (b) Find $Var(\sum_{i=1}^{n} Y_i)$. What earlier questions are you using in connection with independence?
 - (c) Using your answer to the last question, find $Var(\overline{Y})$.
 - (d) A statistic T is an *unbiased estimator* of a parameter θ if $E(T) = \theta$. Show that \overline{Y} is an unbiased estimator of μ .
 - (e) Let a_1, \ldots, a_n be constants and define the linear combination L by $L = \sum_{i=1}^n a_i Y_i$. What condition on the a_i values makes L an unbiased estimator of μ ? Show your work.
 - (f) Is \overline{Y} a special case of L? If so, what are the a_i values?
 - (g) What is Var(L)?
- 14. Here is a simple linear regression model. Independently for i = 1, ..., n, let $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, where β_0 and β_1 are constants (typically unknown), x_i is a known, observable constant, and ϵ_i is a random variable with expected value zero and variance σ^2 .
 - (a) What is $E(Y_i)$?
 - (b) What is $Var(Y_i)$?
 - (c) Suppose that the distribution of ϵ_i is normal, so that it has density $f(\epsilon) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{\epsilon}{2\sigma^2}}$. Find the distribution of Y_i . Show your work. Hint: differentiate the cumulative distribution function of Y_i .
 - (d) Let $\hat{\beta}_1 = \frac{\sum_{i=1}^n x_i Y_i}{\sum_{i=1}^n x_i^2}$. Is $\hat{\beta}_1$ an unbiased estimator of β_1 ? Answer Yes or No and show your work.

15. Let $\mathbf{A} = \begin{pmatrix} 2 & 5 \\ 1 & -4 \\ 0 & 3 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 1 & 0 \\ 2 & 3 \\ -1 & 3 \end{pmatrix}$ be matrices of constants. Which of the following

are possible to compute? Don't do the calculations. Just answer each one Yes or No.

(a) A^{-1} (b) |B| (c) A + B(d) A - B (e) AB (f) BA(g) A'B (h) B'A (i) A/B 16. For the matrices of Question 15, calculate $\mathbf{A'B}$. My answer is $\mathbf{A'B} = \begin{pmatrix} 4 & 3 \\ -6 & -3 \end{pmatrix}$.

17. Let
$$\mathbf{c} = \begin{pmatrix} 2\\1\\0 \end{pmatrix}$$
 and $\mathbf{d} = \begin{pmatrix} 1\\2\\-1 \end{pmatrix}$. Verify that $\mathbf{c'd} = 4$ and $\mathbf{cd'} = \begin{pmatrix} 2 & 4 & -2\\1 & 2 & -1\\0 & 0 & 0 \end{pmatrix}$.

- 18. Which statement is true? Quantities in **boldface** are matrices of constants. Assume the matrices are of the right size.
 - (a) $\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$
 - (b) $\mathbf{A}(\mathbf{B} + \mathbf{C}) = \mathbf{B}\mathbf{A} + \mathbf{C}\mathbf{A}$
 - (c) Both a and b
 - (d) Neither a nor b
- 19. Which statement is true?
 - (a) $a(\mathbf{B} + \mathbf{C}) = a\mathbf{B} + a\mathbf{C}$
 - (b) $a(\mathbf{B} + \mathbf{C}) = \mathbf{B}a + \mathbf{C}a$
 - (c) Both a and b
 - (d) Neither a nor b
- 20. Which statement is true?
 - (a) $(\mathbf{B} + \mathbf{C})\mathbf{A} = \mathbf{A}\mathbf{B} + \mathbf{A}\mathbf{C}$
 - (b) $(\mathbf{B} + \mathbf{C})\mathbf{A} = \mathbf{B}\mathbf{A} + \mathbf{C}\mathbf{A}$
 - (c) Both a and b
 - (d) Neither a nor b
- 21. Which statement is true?
 - (a) (AB)' = A'B'
 - (b) $(\mathbf{AB})' = \mathbf{B}'\mathbf{A}'$
 - (c) Both a and b
 - (d) Neither a nor b
- 22. Which statement is true?
 - (a) $\mathbf{A}'' = \mathbf{A}$

(b)
$$A''' = A'$$

- (c) Both a and b
- (d) Neither a nor b

- 23. Suppose that the square matrices **A** and **B** are of the right sizes, and both have inverses. Which statement is true?
 - (a) $(\mathbf{AB})^{-1} = \mathbf{A}^{-1}\mathbf{B}^{-1}$
 - (b) $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$
 - (c) Both a and b
 - (d) Neither a nor b
- 24. Which statement is true?
 - (a) (A + B)' = A' + B'
 - (b) $(\mathbf{A} + \mathbf{B})' = \mathbf{B}' + \mathbf{A}'$
 - (c) $(\mathbf{A} + \mathbf{B})' = (\mathbf{B} + \mathbf{A})'$
 - (d) All of the above
 - (e) None of the above
- 25. Which statement is true?
 - (a) $(a+b)\mathbf{C} = a\mathbf{C} + b\mathbf{C}$
 - (b) $(a+b)\mathbf{C} = \mathbf{C}a + \mathbf{C}b$
 - (c) $(a+b)\mathbf{C} = \mathbf{C}(a+b)$
 - (d) All of the above
 - (e) None of the above
- 26. Let **A** be a square matrix with the determinant of **A** (denoted $|\mathbf{A}|$) equal to zero. What does this tell you about \mathbf{A}^{-1} ? No proof is required here.
- 27. Recall that A symmetric means $\mathbf{A} = \mathbf{A}'$. Let X be an n by p matrix. Prove that $\mathbf{X}'\mathbf{X}$ is symmetric.
- 28. Matrix multiplication does not commute. That is, if **A** and **B** are matrices, in general it is *not* true that $\mathbf{AB} = \mathbf{BA}$ unless both matrices are 1×1 . Establish this important fact by making up a simple numerical example in which **A** and **B** are both 2×2 matrices. Carry out the multiplication, showing $\mathbf{AB} \neq \mathbf{BA}$. This is also the point of Question 18.
- 29. Let **X** be an *n* by *p* matrix with $n \neq p$. Why is it incorrect to say that $(\mathbf{X}'\mathbf{X})^{-1} = \mathbf{X}^{-1}\mathbf{X}'^{-1}$?

30. Let
$$\mathbf{A} = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \quad \mathbf{B} = \begin{pmatrix} 0 & 2 \\ 2 & 1 \end{pmatrix} \quad \mathbf{C} = \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}$$

- (a) Calculate **AB** and **AC**
- (b) Do we have AB = AC? Answer Yes or No.
- (c) Prove $\mathbf{B} = \mathbf{C}$. Show your work.

This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/302f20