STA 302f20 Assignment One ${ }^{1}$

Please do these review questions in preparation for Quiz One; they are not to be handed in. This material will not directly be on the final exam. Use the formula sheet on the course website.

1. The discrete random variable X has probability mass function $p(x)=|x| / 20$ for $x=-4, \ldots, 4$ and zero otherwise. Let $Y=X^{2}-1$.
(a) What is $E(X)$? The answer is a number. Show some work.
(b) Calculate the variance of X. The answer is a number. My answer is 10 .
(c) What is $P(Y=8)$? My answer is 0.30
(d) What is $P(Y=-1)$? My answer is zero.
(e) What is $P(Y=-4)$? My answer is zero.
(f) What is the probability distribution of Y ? Give the y values with their probabilities.

y	0	3	8	15
$\mathrm{p}(\mathrm{y})$	0.1	0.2	0.3	0.4

(g) What is $E(Y)$? The answer is a number. My answer is 9 .
(h) What is $\operatorname{Var}(Y)$? The answer is a number. My answer is 30 .
2. This question clarifies the meaning of $E(a)$ and $\operatorname{Var}(a)$ when a is a constant.
(a) Let X be a discrete random variable with $P(X=a)=1$ (later we will call this a degenerate random variable). Using the definitions on the formula sheet, calculate $E(X)$ and $\operatorname{Var}(X)$. This is the real meaning of the concept.
(b) Let a be a real constant and X be a continuous random variable with density $f(x)$. Let $Y=g(X)=a$. Using the formula for $E(g(X))$ on the formula sheet, calculate $E(Y)$ and $\operatorname{Var}(Y)$. This reminds us that the change of variables formula (which is a very big theorem) applies to the case of a constant function.
3. The discrete random variables X and Y have joint distribution

	$x=1$	$x=2$	$x=3$
$y=1$	$3 / 12$	$1 / 12$	$3 / 12$
$y=2$	$1 / 12$	$3 / 12$	$1 / 12$

(a) What is the marginal distribution of X ? List the values with their probabilities.
(b) What is the marginal distribution of Y ? List the values with their probabilities.
(c) Calculate $E(X)$. Show your work.
(d) What is $\operatorname{Var}(X)$? Show your work.
(e) Calculate $E(Y)$. Show your work.
(f) Calculate $\operatorname{Var}(Y)$. Show your work. You may use Question 5a if you wish.

[^0](g) Let $Z_{1}=g_{1}(X, Y)=X+Y$. What is the probability distribution of Z_{1} ? Show some work.
(h) Calculate $E\left(Z_{1}\right)$. Show your work.
(i) Do we have $E(X+Y)=E(X)+E(Y)$? Answer Yes or No. Note that the answer does not require independence, or even zero covariance.
(j) Let $Z_{2}=g_{2}(X, Y)=X Y$. What is the probability distribution of Z_{2} ? List the values with their probabilities. Show some work.
(k) Calculate $E\left(Z_{2}\right)$. Show your work.
(l) Do we have $E(X Y)=E(X) E(Y)$? Answer Yes or No.
(m) Using the well-known formula of Question 5 b , what is $\operatorname{Cov}(X, Y)$?
(n) Are X and Y independent? Answer Yes or No and show some work.
4. Let X_{1} and X_{2} be continuous random variables that are independent. Using the expression for $E(g(\mathbf{X}))$ on the formula sheet, show $E\left(X_{1} X_{2}\right)=E\left(X_{1}\right) E\left(X_{2}\right)$. Draw an arrow to the place in your answer where you use independence, and write "This is where I use independence." Because X_{1} and X_{2} are continuous, you will need to integrate. Does your proof still apply if X_{1} and X_{2} are discrete?
5. Using the definitions of variance covariance along with the linear property $E\left(\sum_{i=1}^{n} a_{i} Y_{i}\right)=$ $\sum_{i=1}^{n} a_{i} E\left(Y_{i}\right)$ (no integrals), show the following:
(a) $\operatorname{Var}(Y)=E\left(Y^{2}\right)-\mu_{Y}^{2}$
(b) $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$
(c) If X and Y are independent, $\operatorname{Cov}(X, Y)=0$. Of course you may use Problem 4.
6. Let X be a random variable and a be a constant. Show
(a) $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$.
(b) $\operatorname{Var}(X+a)=\operatorname{Var}(X)$.
7. Show $\operatorname{Var}(X+Y)=\operatorname{Var}(X)+\operatorname{Var}(Y)+2 \operatorname{Cov}(X, Y)$.
8. Let X and Y be random variables, and let a and b be constants. Show $\operatorname{Cov}(X+a, Y+b)=$ $\operatorname{Cov}(X, Y)$.
9. Let X and Y be random variables, with $E(X)=\mu_{x}, E(Y)=\mu_{y}, \operatorname{Var}(X)=\sigma_{x}^{2}, \operatorname{Var}(Y)=\sigma_{y}^{2}$, $\operatorname{Cov}(X, Y)=\sigma_{x y}$ and $\operatorname{Corr}(X, Y)=\rho_{x y}$. Let a and b be non-zero constants.
(a) Find $\operatorname{Cov}(a X, Y)$.
(b) Find $\operatorname{Corr}(a X, Y)$. Do not forget that a could be negative.
10. Let $E\left(X_{1}\right)=\mu_{1}, E\left(X_{2}\right)=\mu_{2}, E\left(Y_{1}\right)=\mu_{3}, E\left(Y_{2}\right)=\mu_{4}$. Show $\operatorname{Cov}\left(X_{1}+X_{2}, Y_{1}+Y_{2}\right)=$ $\operatorname{Cov}\left(X_{1}, Y_{1}\right)+\operatorname{Cov}\left(X_{1}, Y_{2}\right)+\operatorname{Cov}\left(X_{2}, Y_{1}\right)+\operatorname{Cov}\left(X_{2}, Y_{2}\right)$.
11. Let y_{1}, \ldots, y_{n} be numbers (not necessarily random variables), and $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$. Show
(a) $\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)=0$
(b) $\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}=\sum_{i=1}^{n} y_{i}^{2}-n \bar{y}^{2}$
(c) The sum of squares $Q_{m}=\sum_{i=1}^{n}\left(y_{i}-m\right)^{2}$ is minimized when $m=\bar{y}$.
12. Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be numbers, with $\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ and $\bar{y}=\frac{1}{n} \sum_{i=1}^{n} y_{i}$. Show $\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)=\sum_{i=1}^{n} x_{i} y_{i}-n \bar{x} \bar{y}$.
13. Let Y_{1}, \ldots, Y_{n} be independent random variables with $E\left(Y_{i}\right)=\mu$ and $\operatorname{Var}\left(Y_{i}\right)=\sigma^{2}$ for $i=1, \ldots, n$. For this question, please use definitions and familiar properties of expected value, not integrals or sums.
(a) Find $E\left(\sum_{i=1}^{n} Y_{i}\right)$. Are you using independence?
(b) Find $\operatorname{Var}\left(\sum_{i=1}^{n} Y_{i}\right)$. What earlier questions are you using in connection with independence?
(c) Using your answer to the last question, find $\operatorname{Var}(\bar{Y})$.
(d) A statistic T is an unbiased estimator of a parameter θ if $E(T)=\theta$. Show that \bar{Y} is an unbiased estimator of μ.
(e) Let a_{1}, \ldots, a_{n} be constants and define the linear combination L by $L=\sum_{i=1}^{n} a_{i} Y_{i}$. What condition on the a_{i} values makes L an unbiased estimator of μ ? Show your work.
(f) Is \bar{Y} a special case of L ? If so, what are the a_{i} values?
(g) What is $\operatorname{Var}(L)$?
14. Here is a simple linear regression model. Independently for $i=1, \ldots, n$, let $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$, where β_{0} and β_{1} are constants (typically unknown), x_{i} is a known, observable constant, and ϵ_{i} is a random variable with expected value zero and variance σ^{2}.
(a) What is $E\left(Y_{i}\right)$?
(b) What is $\operatorname{Var}\left(Y_{i}\right)$?
(c) Suppose that the distribution of ϵ_{i} is normal, so that it has density $f(\epsilon)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\epsilon^{2}}{2 \sigma^{2}}}$. Find the distribution of Y_{i}. Show your work. Hint: differentiate the cumulative distribution function of Y_{i}.
(d) Let $\widehat{\beta}_{1}=\frac{\sum_{i=1}^{n} x_{i} Y_{i}}{\sum_{i=1}^{n} x_{i}^{2}}$. Is $\widehat{\beta}_{1}$ an unbiased estimator of β_{1} ? Answer Yes or No and show your work.

15. Let $\mathbf{A}=\left(\begin{array}{rr}2 & 5 \\ 1 & -4 \\ 0 & 3\end{array}\right)$ and $\mathbf{B}=\left(\begin{array}{rr}1 & 0 \\ 2 & 3 \\ -1 & 3\end{array}\right)$ be matrices of constants. Which of the following are possible to compute? Don't do the calculations. Just answer each one Yes or No.
(a) \mathbf{A}^{-1}
(b) $|\mathbf{B}|$
(c) $\mathbf{A}+\mathbf{B}$
(d) $\mathbf{A}-\mathbf{B}$
(e) $\mathbf{A B}$
(f) $\mathbf{B A}$
(g) $\mathbf{A}^{\prime} \mathbf{B}$
(h) $\mathbf{B}^{\prime} \mathbf{A}$
(i) \mathbf{A} / \mathbf{B}
16. For the matrices of Question 15, calculate $\mathbf{A}^{\prime} \mathbf{B}$. My answer is $\mathbf{A}^{\prime} \mathbf{B}=\left(\begin{array}{rr}4 & 3 \\ -6 & -3\end{array}\right)$.
17. Let $\mathbf{c}=\left(\begin{array}{l}2 \\ 1 \\ 0\end{array}\right)$ and $\mathbf{d}=\left(\begin{array}{r}1 \\ 2 \\ -1\end{array}\right)$. Verify that $\mathbf{c}^{\prime} \mathbf{d}=4$ and $\mathbf{c d}^{\prime}=\left(\begin{array}{rrr}2 & 4 & -2 \\ 1 & 2 & -1 \\ 0 & 0 & 0\end{array}\right)$.
18. Which statement is true? Quantities in boldface are matrices of constants. Assume the matrices are of the right size.
(a) $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{A B}+\mathbf{A C}$
(b) $\mathbf{A}(\mathbf{B}+\mathbf{C})=\mathbf{B A}+\mathbf{C A}$
(c) Both a and b
(d) Neither a nor b
19. Which statement is true?
(a) $a(\mathbf{B}+\mathbf{C})=a \mathbf{B}+a \mathbf{C}$
(b) $a(\mathbf{B}+\mathbf{C})=\mathbf{B} a+\mathbf{C} a$
(c) Both a and b
(d) Neither a nor b
20. Which statement is true?
(a) $(\mathbf{B}+\mathbf{C}) \mathbf{A}=\mathbf{A B}+\mathbf{A C}$
(b) $(\mathbf{B}+\mathbf{C}) \mathbf{A}=\mathbf{B A}+\mathbf{C A}$
(c) Both a and b
(d) Neither a nor b
21. Which statement is true?
(a) $(\mathbf{A B})^{\prime}=\mathbf{A}^{\prime} \mathbf{B}^{\prime}$
(b) $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$
(c) Both a and b
(d) Neither a nor b
22. Which statement is true?
(a) $\mathbf{A}^{\prime \prime}=\mathbf{A}$
(b) $\mathbf{A}^{\prime \prime \prime}=\mathbf{A}^{\prime}$
(c) Both a and b
(d) Neither a nor b
23. Suppose that the square matrices \mathbf{A} and \mathbf{B} are of the right sizes, and both have inverses. Which statement is true?
(a) $(\mathbf{A B})^{-1}=\mathbf{A}^{-1} \mathbf{B}^{-1}$
(b) $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$
(c) Both a and b
(d) Neither a nor b
24. Which statement is true?
(a) $(\mathbf{A}+\mathbf{B})^{\prime}=\mathbf{A}^{\prime}+\mathbf{B}^{\prime}$
(b) $(\mathbf{A}+\mathbf{B})^{\prime}=\mathbf{B}^{\prime}+\mathbf{A}^{\prime}$
(c) $(\mathbf{A}+\mathbf{B})^{\prime}=(\mathbf{B}+\mathbf{A})^{\prime}$
(d) All of the above
(e) None of the above
25. Which statement is true?
(a) $(a+b) \mathbf{C}=a \mathbf{C}+b \mathbf{C}$
(b) $(a+b) \mathbf{C}=\mathbf{C} a+\mathbf{C} b$
(c) $(a+b) \mathbf{C}=\mathbf{C}(a+b)$
(d) All of the above
(e) None of the above
26. Let \mathbf{A} be a square matrix with the determinant of \mathbf{A} (denoted $|\mathbf{A}|$) equal to zero. What does this tell you about \mathbf{A}^{-1} ? No proof is required here.
27. Recall that \mathbf{A} symmetric means $\mathbf{A}=\mathbf{A}^{\prime}$. Let \mathbf{X} be an n by p matrix. Prove that $\mathbf{X}^{\prime} \mathbf{X}$ is symmetric.
28. Matrix multiplication does not commute. That is, if \mathbf{A} and \mathbf{B} are matrices, in general it is not true that $\mathbf{A B}=\mathbf{B A}$ unless both matrices are 1×1. Establish this important fact by making up a simple numerical example in which \mathbf{A} and \mathbf{B} are both 2×2 matrices. Carry out the multiplication, showing $\mathbf{A B} \neq \mathbf{B A}$. This is also the point of Question 18.
29. Let \mathbf{X} be an n by p matrix with $n \neq p$. Why is it incorrect to say that $\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}=\mathbf{X}^{-1} \mathbf{X}^{\prime-1}$?
30. Let $\quad \mathbf{A}=\left(\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right) \quad \mathbf{B}=\left(\begin{array}{ll}0 & 2 \\ 2 & 1\end{array}\right) \quad \mathbf{C}=\left(\begin{array}{ll}2 & 0 \\ 1 & 2\end{array}\right)$
(a) Calculate $\mathbf{A B}$ and $\mathbf{A C}$
(b) Do we have $\mathbf{A B}=\mathbf{A C}$? Answer Yes or No.
(c) Prove $\mathbf{B}=\mathbf{C}$. Show your work.

This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{LA}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/302f20

[^0]: ${ }^{1}$ Copyright information is at the end of the last page.

