More Linear Algebra¹ STA 302: Fall 2017

¹See Chapter 2 of *Linear models in statistics* for more detail. This slide show is an open-source document. See last slide for copyright information.

Overview

- 1 Things you already know
- 2 Trace
- 3 Spectral decomposition
- 4 Positive definite
- **5** Square root matrices
- 6 Extras

You already know about

- Matrices $A = (a_{ij})$
- Column vectors $\mathbf{v} = (v_j)$
- Matrix addition and subtraction $A + B = (a_{ij} + b_{ij})$
- Scalar multiplication $aB = (a b_{ij})$
- Matrix multiplication $AB = \left(\sum_{k} a_{ik} b_{kj}\right)$

In words: The i, j element of AB is the inner product of row i of A with column j of B.

- Inverse: $A^{-1}A = AA^{-1} = I$
- Transpose $A' = (a_{ji})$
- Symmetric matrices: A = A'
- Determinants
- Linear independence

Inverses: Proving $B = A^{-1}$

- $B = A^{-1}$ means AB = BA = I.
- It looks like you have two things to show.
- But if A and B are square matrices of the same size, you only need to do it in one direction.

Theorem

If A and B are square matrices and AB = I, then A and B are inverses.

Proof: Suppose AB = I

- A and B must both have inverses, for otherwise $|AB| = |A| |B| = 0 \neq |I| = 1$. Now,
- $AB = I \Rightarrow ABB^{-1} = IB^{-1} \Rightarrow A = B^{-1}$.
- $AB = I \Rightarrow A^{-1}AB = A^{-1}I \Rightarrow B = A^{-1}.$

How to show $A^{-1\prime} = A^{\prime-1\prime}$

- Let $B = A^{-1}$.
- Want to prove that B' is the inverse of A'.
- It is enough to show that B'A' = I.

• $AB = I \Rightarrow B'A' = I' = I$

Three mistakes that will get you a zero Numbers are 1×1 matrices, but larger matrices are not just numbers.

You will get a zero if you

- Write AB = BA. It's not true in general.
- Write A^{-1} when A is not a square matrix. The inverse is not even defined.
- Represent the inverse of a matrix (even if it exists) by writing it in the denominator, like $\mathbf{a}' B^{-1} \mathbf{a} = \frac{\mathbf{a}' \mathbf{a}}{B}$.

Matrices are not just numbers.

If you commit one of these crimes, the mark for the question (or part of a question, like 3c) is zero. The rest of your answer will be ignored, and will also get a zero.

Half marks off, at least

You will lose at least half marks for writing a product like AB when the number of colmns in A does not equal the number of rows in B.

Linear combination of vectors

Let $\mathbf{x}_1, \ldots, \mathbf{x}_p$ be $n \times 1$ vectors and a_1, \ldots, a_p be scalars. A *linear combination* of the vectors is

Linear independence

A set of vectors $\mathbf{x}_1, \ldots, \mathbf{x}_p$ is said to be *linearly dependent* if there is a set of scalars a_1, \ldots, a_p , not all zero, with

$$a_1 \begin{pmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{n1} \end{pmatrix} + a_2 \begin{pmatrix} x_{12} \\ x_{22} \\ \vdots \\ x_{n2} \end{pmatrix} + \dots + a_p \begin{pmatrix} x_{1p} \\ x_{2p} \\ \vdots \\ x_{np} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

If no such constants a_1, \ldots, a_p exist, the vectors are linearly independent. That is,

If $a_1\mathbf{x}_1 + a_2\mathbf{x}_2 + \cdots + a_p\mathbf{x}_p = \mathbf{0}$ implies $a_1 = a_2 \cdots = a_p = 0$, then the vectors are said to be *linearly independent*.

Bind the vectors $\mathbf{x}_1, \ldots, \mathbf{x}_p$ into a matrix

$$a_{1}\mathbf{x}_{1} + a_{2}\mathbf{x}_{2} + \cdots + a_{p}\mathbf{x}_{p}$$

$$= \begin{pmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{n1} \end{pmatrix} a_{1} + \begin{pmatrix} x_{12} \\ x_{22} \\ \vdots \\ x_{n2} \end{pmatrix} a_{2} + \cdots + \begin{pmatrix} x_{1p} \\ x_{2p} \\ \vdots \\ x_{np} \end{pmatrix} a_{p}$$

$$= \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \cdots & n_{np} \end{pmatrix} \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{p} \end{pmatrix}$$

= Xa

A more convenient definition of linear independence $a_1\mathbf{x}_1 + a_2\mathbf{x}_2 + \dots + a_p\mathbf{x}_p = X\mathbf{a}$

Let X be an $n \times p$ matrix of constants. The columns of X are said to be *linearly dependent* if there exists $\mathbf{a} \neq \mathbf{0}$ with $X\mathbf{a} = \mathbf{0}$. We will say that the columns of X are linearly *independent* if $X\mathbf{a} = \mathbf{0}$ implies $\mathbf{a} = \mathbf{0}$.

For example, show that the existence of B^{-1} implies that the columns of B are linearly independent.

$$B\mathbf{a} = \mathbf{0} \Rightarrow B^{-1}B\mathbf{a} = B^{-1}\mathbf{0} \Rightarrow \mathbf{a} = \mathbf{0}$$

Trace of a square matrix

- Sum of diagonal elements
- Obvious: tr(A+B) = tr(A) + tr(B)
- Not obvious: tr(AB) = tr(BA)
- Even though $AB \neq BA$.

tr(AB) = tr(BA)Let A be $p \times q$ and B be $q \times p$, so that AB is $p \times p$ and BA is $q \times q$.

First, agree that $\sum_{i=1}^{n} x_i = \sum_{j=1}^{n} x_j$.

$$tr(AB) = tr(\left[\sum_{k=1}^{q} a_{ik}b_{kj}\right])$$
$$= \sum_{i=1}^{p} \sum_{k=1}^{q} \frac{a_{ik}b_{ki}}{a_{ik}}$$
$$= \sum_{k=1}^{q} \sum_{i=1}^{p} \frac{b_{ki}a_{ik}}{a_{ki}}$$
$$= \sum_{i=1}^{q} \sum_{k=1}^{p} b_{ik}a_{ki}$$
$$= tr(\left[\sum_{k=1}^{p} b_{ik}a_{kj}\right])$$
$$= tr(BA)$$

Eigenvalues and eigenvectors

Let $A = [a_{i,j}]$ be an $n \times n$ matrix, so that the following applies to square matrices. A is said to have an *eigenvalue* λ and (non-zero) *eigenvector* $\mathbf{x} \neq \mathbf{0}$ corresponding to λ if

$$A\mathbf{x} = \lambda \mathbf{x}.$$

Eigenvectors can be scaled to have length one, so that $\mathbf{x}'\mathbf{x} = 1$.

- Eigenvalues are the λ values that solve the determinantal equation $|A \lambda I| = 0$.
- The determinant is the product of the eigenvalues: $|A| = \prod_{i=1}^{n} \lambda_i$

Spectral decomposition of symmetric matrices

The Spectral decomposition theorem says that every square and symmetric matrix $A = [a_{i,j}]$ may be written

$$A = CDC',$$

where the columns of C (which may also be denoted $\mathbf{x}_1, \ldots, \mathbf{x}_n$) are the eigenvectors of A, and the diagonal matrix D contains the corresponding eigenvalues.

$$D = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

The eigenvectors may be chosen to be orthonormal, so that C is an orthogonal matrix. That is, CC' = C'C = I.

Positive definite matrices

The $n \times n$ matrix A is said to be *positive definite* if

 $\mathbf{y}'A\mathbf{y} > 0$

for all $n \times 1$ vectors $\mathbf{y} \neq \mathbf{0}$. It is called *non-negative definite* (or sometimes positive semi-definite) if $\mathbf{y}' A \mathbf{y} \ge 0$.

Example: Show X'X non-negative definite

Let X be an $n \times p$ matrix of real constants and let \mathbf{y} be $p \times 1$. Then $\mathbf{z} = X\mathbf{y}$ is $n \times 1$, and

$$\mathbf{y}'(X'X)\mathbf{y}$$

$$= (X\mathbf{y})'(X\mathbf{y})$$

$$= \mathbf{z}'\mathbf{z}$$

$$= \sum_{i=1}^{n} z_i^2 \ge 0 \quad \blacksquare$$

Some properties of symmetric positive definite matrices Variance-covariance matrices are often assumed positive definite.

For a symmetric matrix,

```
Positive definite

\downarrow

All eigenvalues positive

\downarrow

Inverse exists \Leftrightarrow Columns (rows) linearly independent.
```

If a real symmetric matrix is also non-negative definite, as a variance-covariance matrix *must* be, Inverse exists \Rightarrow Positive definite

Showing Positive definite \Rightarrow Eigenvalues positive

Let the $p \times p$ matrix A be positive definite, so that $\mathbf{y}' A \mathbf{y} > 0$ for all $\mathbf{y} \neq \mathbf{0}$.

 λ an eigenvalue means $A\mathbf{x} = \lambda \mathbf{x}$ with $\mathbf{x}'\mathbf{x} = 1$.

 $\Rightarrow \mathbf{x}' A \mathbf{x} = \mathbf{x}' \lambda \mathbf{x} = \lambda \mathbf{x}' \mathbf{x} = \lambda > 0.$

Inverse of a diagonal matrix To set things up

Suppose $D = [d_{i,j}]$ is a diagonal matrix with non-zero diagonal elements. It is easy to verify that

$$\begin{pmatrix} 1/d_{1,1} & 0 & \cdots & 0\\ 0 & 1/d_{2,2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & 1/d_{n,n} \end{pmatrix} \begin{pmatrix} d_{1,1} & 0 & \cdots & 0\\ 0 & d_{2,2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & d_{n,n} \end{pmatrix} = I$$

So D^{-1} exists.

Showing Eigenvalues positive \Rightarrow Inverse exists For a symmetric, positive definite matrix

Let A be symmetric and positive definite. Then A = CDC', and its eigenvalues are positive.

Let $B = CD^{-1}C'$. Show $B = A^{-1}$.

$$AB = CDC'CD^{-1}C' = I$$

 So

$$A^{-1} = CD^{-1}C'$$

Square root matrices For symmetric, non-negative definite matrices

To set things up, define

$$D^{1/2} = \begin{pmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0\\ 0 & \sqrt{\lambda_2} & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \sqrt{\lambda_n} \end{pmatrix}$$

So that

$$D^{1/2}D^{1/2} = \begin{pmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_n} \end{pmatrix} \begin{pmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_n} \end{pmatrix} \\ = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = D$$

For a non-negative definite, symmetric matrix A

Define

$$A^{1/2} = CD^{1/2}C'$$

So that

 $\begin{array}{rcl} A^{1/2}A^{1/2} &=& CD^{1/2}C'CD^{1/2}C'\\ &=& CD^{1/2}ID^{1/2}C'\\ &=& CD^{1/2}D^{1/2}C'\\ &=& CDC'\\ &=& A \end{array}$

The square root of the inverse is the inverse of the square root

Let A be symmetric and positive definite, with A = CDC'. Let $B = CD^{-1/2}C'$. What is $D^{-1/2}$? Show $B = (A^{-1})^{1/2}$. $BB = CD^{-1/2}C'CD^{-1/2}C'$ $= CD^{-1}C' = A^{-1}$

Show
$$B = (A^{1/2})^{-1}$$

 $A^{1/2}B = CD^{1/2}C'CD^{-1/2}C' = I$

Just write $A^{-1/2} = C D^{-1/2} C'$

25 / 40

Extras You may not know about these, but we may use them occasionally

- Rank
- Partitioned matrices

Rank

- Row rank is the number of linearly independent rows.
- Column rank is the number of linearly independent columns.
- Rank of a matrix is the minimum of row rank and column rank.
- rank(AB) = min(rank(A), rank(B)).

Partitioned matrix

• A matrix of matrices

$$\begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$$

• Row by column (matrix) multiplication works, provided the matrices are the right sizes.

Matrix calculation with R

> is.matrix(3) # Is the number 3 a 1x1 matrix?

[1] FALSE

> treecorr = cor(trees); treecorr

Girth Height Volume Girth 1.000000 0.5192801 0.9671194 Height 0.5192801 1.000000 0.5982497 Volume 0.9671194 0.5982497 1.000000

> is.matrix(treecorr)

[1] TRUE

Creating matrices Bind rows into a matrix

```
> # Bind rows of a matrix together
> A = rbind(c(3, 2, 6, 8)),
            c(2,10,-7,4),
+
+
            c(6, 6, 9,1) ); A
    [,1] [,2] [,3] [,4]
[1,]
    3 2 6
                    8
[2,] 2 10 -7 4
                    1
[3,]
      6
           6 9
> # Transpose
> t(A)
    [,1] [,2] [,3]
[1,]
      3 2
               6
[2,]
      2 10
               6
[3,] 6
               9
        -7
               1
[4,]
       8
           4
```

Matrix multiplication Remember, A is 3×4

```
> # U = AA' (3x3), V = A'A (4x4)
> U = A % * % t(A)
> V = t(A) %*% A; V
     [,1] [,2] [,3] [,4]
[1,]
       49
            62
                 58
                       38
[2,]
       62
           140
                -4
                       62
[3,]
       58
           -4
                 166
                      29
[4,]
       38
            62
                  29
                       81
```

Determinants

```
> # U = AA' (3x3), V = A'A (4x4)
> # So rank(V) cannot exceed 3 and det(V)=0
> det(U); det(V)
```

[1] 1490273
[1] -3.622862e-09

Inverse of U exists, but inverse of V does not.

Inverses

- The solve function is for solving systems of linear equations like $M\mathbf{x} = \mathbf{b}$.
- Just typing solve(M) gives M^{-1} .

```
> # Recall U = AA' (3x3), V = A'A (4x4)
> solve(U)
```

	[,1]	[,2]	[,3]
[1,]	0.0173505123	-8.508508e-04	-1.029342e-02
[2,]	-0.0008508508	5.997559e-03	2.013054e-06
[3,]	-0.0102934160	2.013054e-06	1.264265e-02

> solve(V)

```
Error in solve.default(V) :
    system is computationally singular: reciprocal condition
    number = 6.64193e-18
```

Eigenvalues and eigenvectors

```
> # Recall U = AA' (3x3), V = A'A (4x4)
```

```
> eigen(U)
```

\$values
[1] 234.01162 162.89294 39.09544

\$vectors

	[,1]	[,2]	[,3]
[1,]	-0.6025375	0.1592598	0.78203893
[2,]	-0.2964610	-0.9544379	-0.03404605
[3,]	-0.7409854	0.2523581	-0.62229894

V should have at least one zero eigenvalue Because A is 3×4 , V = A'A, and the rank of a product is the minimum rank of the matrices.

> eigen(V)

\$values

[1] 2.340116e+02 1.628929e+02 3.909544e+01 -1.012719e-14

\$vectors

	[,1]	[,2]	[,3]	[,4]
[1,]	-0.4475551	0.006507269	-0.2328249	0.863391352
[2,]	-0.5632053	-0.604226296	-0.4014589	-0.395652773
[3,]	-0.5366171	0.776297432	-0.1071763	-0.312917928
[4,]	-0.4410627	-0.179528649	0.8792818	0.009829883

Spectral decomposition V = CDC'

```
> eigenV = eigen(V)
> C = eigenV$vectors; D = diag(eigenV$values); D
```

	[,1]	[,2]	[,3]	[,4]
[1,]	234.0116	0.0000	0.00000	0.000000e+00
[2,]	0.0000	162.8929	0.00000	0.000000e+00
[3,]	0.0000	0.0000	39.09544	0.000000e+00
[4,]	0.0000	0.0000	0.00000	-1.012719e-14

```
> # C is an orthoganal matrix
> C %*% t(C)
```

[,1] [,2] [,3] [,4] [1,] 1.00000e+00 5.551115e-17 0.000000e+00 -3.989864e-17 [2,] 5.551115e-17 1.000000e+00 2.636780e-16 3.556183e-17 [3,] 0.00000e+00 2.636780e-16 1.000000e+00 2.558717e-16 [4,] -3.989864e-17 3.556183e-17 2.558717e-16 1.000000e+00

Verify V = CDC'

> V; C %*% D %*% t(C)

[1,]	[,1] 49	[,2] 62	[,3] 58	[,4] 38
[2,]	62	140	-4	62
[3,]	58	-4	166	29
[4,]	38	62	29	81
	[,1]	[,2]	[,3]	[,4]
[1,]	49	62	58	38
[2,]	62	140	-4	62
[3,]	58	-4	166	29
[4,]				

Square root matrix $V^{1/2} = CD^{1/2}C'$

```
> sqrtV = C %*% sqrt(D) %*% t(C)
```

```
Warning message:
In sqrt(D) : NaNs produced
```

```
> # Multiply to get V
> sqrtV %*% sqrtV; V
```

	[,1]	[,2]	[,3]	[,4]
[1,]	NaN	NaN	NaN	NaN
[2,]	NaN	NaN	NaN	NaN
[3,]	NaN	NaN	NaN	NaN
[4,]	NaN	NaN	NaN	NaN
	[,1]	[,2]	[,3]	[,4]
[1,]	[,1] 49	[,2] 62	[,3] 58	[,4] 38
[1,] [2,]	-, -	-, -	-, -	-, -
-	49	62	58	38

What happened?

> D; sqrt(D)

[,1]	[,2]	[,3]	[,4]
234.0116	0.0000	0.00000	0.000000e+00
0.0000	162.8929	0.00000	0.000000e+00
0.0000	0.0000	39.09544	0.000000e+00
0.0000	0.0000	0.00000	-1.012719e-14
	234.0116 0.0000 0.0000 0.0000	234.0116 0.0000 0.0000 162.8929 0.0000 0.0000 0.0000 0.0000	[,1] [,2] [,3] 234.0116 0.0000 0.00000 0.0000 162.8929 0.00000 0.0000 0.0000 39.09544 0.0000 0.0000 0.00000

	[,1]	[,2]	[,3]	[,4]
[1,]	15.29744	0.00000	0.000000	0
[2,]	0.00000	12.76295	0.000000	0
[3,]	0.00000	0.00000	6.252635	0
[4,]	0.00000	0.00000	0.000000	NaN

Warning message: In sqrt(D) : NaNs produced

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/302f17