More Linear Algebra ${ }^{1}$ STA 302: Fall 2017

[^0]
Overview

(1) Things you already know
(2) Trace
(3) Spectral decomposition
(4) Positive definite
(5) Square root matrices
(6) Extras
(7) R

You already know about

- Matrices $A=\left(a_{i j}\right)$
- Column vectors $\mathbf{v}=\left(v_{j}\right)$
- Matrix addition and subtraction $A+B=\left(a_{i j}+b_{i j}\right)$
- Scalar multiplication $a B=\left(a b_{i j}\right)$
- Matrix multiplication $A B=\left(\sum_{k} a_{i k} b_{k j}\right)$

In words: The i, j element of $A B$ is the inner product of row i of A with column j of B.

- Inverse: $A^{-1} A=A A^{-1}=I$
- Transpose $A^{\prime}=\left(a_{j i}\right)$
- Symmetric matrices: $A=A^{\prime}$
- Determinants
- Linear independence

Inverses: Proving $B=A^{-1}$

- $B=A^{-1}$ means $A B=B A=I$.
- It looks like you have two things to show.
- But if A and B are square matrices of the same size, you only need to do it in one direction.

Theorem

If A and B are square matrices and $A B=I$, then A and B are inverses.

Proof: Suppose $A B=I$

- A and B must both have inverses, for otherwise $|A B|=|A||B|=0 \neq|I|=1$. Now,
- $A B=I \Rightarrow A B B^{-1}=I B^{-1} \Rightarrow A=B^{-1}$.
- $A B=I \Rightarrow A^{-1} A B=A^{-1} I \Rightarrow B=A^{-1}$.

How to show $A^{-1 /}=A^{\prime-1}$

- Let $B=A^{-1}$.
- Want to prove that B^{\prime} is the inverse of A^{\prime}.
- It is enough to show that $B^{\prime} A^{\prime}=I$.
- $A B=I \Rightarrow B^{\prime} A^{\prime}=I^{\prime}=I$ ■

Three mistakes that will get you a zero
 Numbers are 1×1 matrices, but larger matrices are not just numbers.

You will get a zero if you

- Write $A B=B A$. It's not true in general.
- Write A^{-1} when A is not a square matrix. The inverse is not even defined.
- Represent the inverse of a matrix (even if it exists) by writing it in the denominator, like $\mathbf{a}^{\prime} B^{-1} \mathbf{a}=\frac{\mathbf{a}^{\prime} \mathbf{a}}{B}$.

Matrices are not just numbers.
If you commit one of these crimes, the mark for the question (or part of a question, like 3c) is zero. The rest of your answer will be ignored, and will also get a zero.

Half marks off, at least

You will lose at least half marks for writing a product like $A B$ when the number of colmns in A does not equal the number of rows in B.

Linear combination of vectors

Let $\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}$ be $n \times 1$ vectors and a_{1}, \ldots, a_{p} be scalars. A linear combination of the vectors is

$$
\begin{aligned}
& \mathbf{c}=a_{1} \mathbf{x}_{1}+\quad a_{2} \mathbf{x}_{2}+\cdots+\quad+\quad a_{p} \mathbf{x}_{p} \\
& =a_{1}\left(\begin{array}{c}
x_{11} \\
x_{21} \\
\vdots \\
x_{n 1}
\end{array}\right)+a_{2}\left(\begin{array}{c}
x_{12} \\
x_{22} \\
\vdots \\
x_{n 2}
\end{array}\right)+\cdots+a_{p}\left(\begin{array}{c}
x_{1 p} \\
x_{2 p} \\
\vdots \\
\\
x_{n p}
\end{array}\right)
\end{aligned}
$$

Linear independence

A set of vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}$ is said to be linearly dependent if there is a set of scalars a_{1}, \ldots, a_{p}, not all zero, with

$$
a_{1}\left(\begin{array}{c}
x_{11} \\
x_{21} \\
\vdots \\
x_{n 1}
\end{array}\right)+a_{2}\left(\begin{array}{c}
x_{12} \\
x_{22} \\
\vdots \\
x_{n 2}
\end{array}\right)+\cdots+a_{p}\left(\begin{array}{c}
x_{1 p} \\
x_{2 p} \\
\vdots \\
x_{n p}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

If no such constants a_{1}, \ldots, a_{p} exist, the vectors are linearly independent. That is,

If $a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}+\cdots+a_{p} \mathbf{x}_{p}=\mathbf{0}$ implies $a_{1}=a_{2} \cdots=a_{p}=0$, then the vectors are said to be linearly independent.

Bind the vectors $\mathbf{x}_{1}, \ldots, \mathbf{x}_{p}$ into a matrix

$$
\begin{aligned}
& a_{1} \mathbf{x}_{1}+a_{2} \mathbf{x}_{2}+\cdots+\quad a_{p} \mathbf{x}_{p} \\
& =\left(\begin{array}{c}
x_{11} \\
x_{21} \\
\vdots \\
x_{n 1}
\end{array}\right) a_{1}+\left(\begin{array}{c}
x_{12} \\
x_{22} \\
\vdots \\
x_{n 2}
\end{array}\right) a_{2}+\cdots \quad+\left(\begin{array}{c}
x_{1 p} \\
x_{2 p} \\
\vdots \\
x_{n p}
\end{array}\right) a_{p} \\
& =\left(\begin{array}{cccc}
x_{11} & x_{12} & \cdots & x_{1 p} \\
x_{21} & x_{22} & \cdots & x_{2 p} \\
\vdots & \vdots & \vdots & \vdots \\
x_{n 1} & x_{n 2} & \cdots & n_{n p}
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{p}
\end{array}\right) \\
& =X \mathbf{a}
\end{aligned}
$$

Let X be an $n \times p$ matrix of constants. The columns of X are said to be linearly dependent if there exists $\mathbf{a} \neq \mathbf{0}$ with $X \mathbf{a}=\mathbf{0}$. We will say that the columns of X are linearly independent if $X \mathbf{a}=\mathbf{0}$ implies $\mathbf{a}=\mathbf{0}$.

For example, show that the existence of B^{-1} implies that the columns of B are linearly independent.

$$
B \mathbf{a}=\mathbf{0} \Rightarrow B^{-1} B \mathbf{a}=B^{-1} \mathbf{0} \Rightarrow \mathbf{a}=\mathbf{0}
$$

Trace of a square matrix

- Sum of diagonal elements
- Obvious: $\operatorname{tr}(A+B)=\operatorname{tr}(A)+\operatorname{tr}(B)$
- Not obvious: $\operatorname{tr}(A B)=\operatorname{tr}(B A)$
- Even though $A B \neq B A$.

$\operatorname{tr}(A B)=\operatorname{tr}(B A)$

Let A be $p \times q$ and B be $q \times p$, so that $A B$ is $p \times p$ and $B A$ is $q \times q$.
First, agree that $\sum_{i=1}^{n} x_{i}=\sum_{j=1}^{n} x_{j}$.

$$
\begin{aligned}
\operatorname{tr}(A B) & =\operatorname{tr}\left(\left[\sum_{k=1}^{q} a_{i k} b_{k j}\right]\right) \\
& =\sum_{i=1}^{p} \sum_{k=1}^{q} a_{i k} b_{k i} \\
& =\sum_{k=1}^{q} \sum_{i=1}^{p} b_{k i} a_{i k} \\
& =\sum_{i=1}^{q} \sum_{k=1}^{p} b_{i k} a_{k i} \\
& =\operatorname{tr}\left(\left[\sum_{k=1}^{p} b_{i k} a_{k j}\right]\right) \\
& =\operatorname{tr}(B A)
\end{aligned}
$$

Eigenvalues and eigenvectors

Let $A=\left[a_{i, j}\right]$ be an $n \times n$ matrix, so that the following applies to square matrices. A is said to have an eigenvalue λ and (non-zero) eigenvector $\mathbf{x} \neq \mathbf{0}$ corresponding to λ if

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

Eigenvectors can be scaled to have length one, so that $\mathbf{x}^{\prime} \mathbf{x}=1$.

- Eigenvalues are the λ values that solve the determinantal equation $|A-\lambda I|=0$.
- The determinant is the product of the eigenvalues:

$$
|A|=\prod_{i=1}^{n} \lambda_{i}
$$

Spectral decomposition of symmetric matrices

The Spectral decomposition theorem says that every square and symmetric matrix $A=\left[a_{i, j}\right]$ may be written

$$
A=C D C^{\prime},
$$

where the columns of C (which may also be denoted $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$) are the eigenvectors of A, and the diagonal matrix D contains the corresponding eigenvalues.

$$
D=\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)
$$

The eigenvectors may be chosen to be orthonormal, so that C is an orthogonal matrix. That is, $C C^{\prime}=C^{\prime} C=I$.

Positive definite matrices

The $n \times n$ matrix A is said to be positive definite if

$$
\mathbf{y}^{\prime} A \mathbf{y}>0
$$

for all $n \times 1$ vectors $\mathbf{y} \neq \mathbf{0}$. It is called non-negative definite (or sometimes positive semi-definite) if $\mathbf{y}^{\prime} A \mathbf{y} \geq 0$.

Example: Show $X^{\prime} X$ non-negative definite

Let X be an $n \times p$ matrix of real constants and let \mathbf{y} be $p \times 1$. Then $\mathbf{z}=X \mathbf{y}$ is $n \times 1$, and

$$
\begin{aligned}
& \mathbf{y}^{\prime}\left(X^{\prime} X\right) \mathbf{y} \\
= & (X \mathbf{y})^{\prime}(X \mathbf{y}) \\
= & \mathbf{z}^{\prime} \mathbf{z} \\
= & \sum_{i=1}^{n} z_{i}^{2} \geq 0
\end{aligned}
$$

Some properties of symmetric positive definite matrices

Variance-covariance matrices are often assumed positive definite.

For a symmetric matrix,

Positive definite
\Downarrow
All eigenvalues positive
\Downarrow
Inverse exists \Leftrightarrow Columns (rows) linearly independent.

If a real symmetric matrix is also non-negative definite, as a variance-covariance matrix must be, Inverse exists \Rightarrow Positive definite

Showing Positive definite \Rightarrow Eigenvalues positive

Let the $p \times p$ matrix A be positive definite, so that $\mathbf{y}^{\prime} A \mathbf{y}>0$ for all $\mathbf{y} \neq \mathbf{0}$.
λ an eigenvalue means $A \mathbf{x}=\lambda \mathbf{x}$ with $\mathbf{x}^{\prime} \mathbf{x}=1$.
$\Rightarrow \mathrm{x}^{\prime} A \mathrm{x}=\mathrm{x}^{\prime} \lambda \mathrm{x}=\lambda \mathrm{x}^{\prime} \mathbf{x}=\lambda>0$.

Inverse of a diagonal matrix

To set things up

Suppose $D=\left[d_{i, j}\right]$ is a diagonal matrix with non-zero diagonal elements. It is easy to verify that

$$
\left(\begin{array}{cccc}
1 / d_{1,1} & 0 & \cdots & 0 \\
0 & 1 / d_{2,2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 / d_{n, n}
\end{array}\right)\left(\begin{array}{cccc}
d_{1,1} & 0 & \cdots & 0 \\
0 & d_{2,2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n, n}
\end{array}\right)=I
$$

So D^{-1} exists.

Showing Eigenvalues positive \Rightarrow Inverse exists For a symmetric, positive definite matrix

Let A be symmetric and positive definite. Then $A=C D C^{\prime}$, and its eigenvalues are positive.
Let $B=C D^{-1} C^{\prime}$. Show $B=A^{-1}$.

$$
A B=C D C^{\prime} C D^{-1} C^{\prime}=I
$$

So

$$
A^{-1}=C D^{-1} C^{\prime}
$$

Square root matrices

For symmetric, non-negative definite matrices
To set things up, define

$$
D^{1 / 2}=\left(\begin{array}{cccc}
\sqrt{\lambda_{1}} & 0 & \cdots & 0 \\
0 & \sqrt{\lambda_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sqrt{\lambda_{n}}
\end{array}\right)
$$

So that

$$
\begin{aligned}
D^{1 / 2} D^{1 / 2}= & \left(\begin{array}{cccc}
\sqrt{\lambda_{1}} & 0 & \cdots & 0 \\
0 & \sqrt{\lambda_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sqrt{\lambda_{n}}
\end{array}\right)\left(\begin{array}{cccc}
\sqrt{\lambda_{1}} & 0 & \cdots & 0 \\
0 & \sqrt{\lambda_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sqrt{\lambda_{n}}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right)=D
\end{aligned}
$$

For a non-negative definite, symmetric matrix A

Define

$$
A^{1 / 2}=C D^{1 / 2} C^{\prime}
$$

So that

$$
\begin{aligned}
A^{1 / 2} A^{1 / 2} & =C D^{1 / 2} C^{\prime} C D^{1 / 2} C^{\prime} \\
& =C D^{1 / 2} I D^{1 / 2} C^{\prime} \\
& =C D^{1 / 2} D^{1 / 2} C^{\prime} \\
& =C D C^{\prime} \\
& =A
\end{aligned}
$$

The square root of the inverse is the inverse of the square root

Let A be symmetric and positive definite, with $A=C D C^{\prime}$.
Let $B=C D^{-1 / 2} C^{\prime}$. What is $D^{-1 / 2}$?
Show $B=\left(A^{-1}\right)^{1 / 2}$.

$$
\begin{aligned}
B B & =C D^{-1 / 2} C^{\prime} C D^{-1 / 2} C^{\prime} \\
& =C D^{-1} C^{\prime}=A^{-1}
\end{aligned}
$$

Show $B=\left(A^{1 / 2}\right)^{-1}$

$$
A^{1 / 2} B=C D^{1 / 2} C^{\prime} C D^{-1 / 2} C^{\prime}=I
$$

Just write $\quad A^{-1 / 2}=C D^{-1 / 2} C^{\prime}$

Extras

You may not know about these, but we may use them occasionally

- Rank
- Partitioned matrices

Rank

- Row rank is the number of linearly independent rows.
- Column rank is the number of linearly independent columns.
- Rank of a matrix is the minimum of row rank and column rank.
- $\operatorname{rank}(A B)=\min (\operatorname{rank}(A), \operatorname{rank}(B))$.

Partitioned matrix

- A matrix of matrices

$$
\left[\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right]
$$

- Row by column (matrix) multiplication works, provided the matrices are the right sizes.

Matrix calculation with R

```
> is.matrix(3) # Is the number 3 a 1x1 matrix?
[1] FALSE
```

> treecorr = cor(trees); treecorr

	Girth	Height	Volume
Girth	1.0000000	0.5192801	0.9671194
Height	0.5192801	1.0000000	0.5982497
Volume	0.9671194	0.5982497	1.0000000

> is.matrix(treecorr)
[1] TRUE

Creating matrices

Bind rows into a matrix
> \# Bind rows of a matrix together
$>A=r b i n d(c(3,2,6,8)$,
$+\quad c(2,10,-7,4)$,
$+\quad \mathrm{c}(6,6,9,1) \quad$; A

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	3	2	6	8
$[2]$,	2	10	-7	4
$[3]$,	6	6	9	1

> \# Transpose
$>\mathrm{t}$ (A)

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	3	2	6
$[2]$,	2	10	6
$[3]$,	6	-7	9
$[4]$,	8	4	1

Matrix multiplication

Remember, A is 3×4
$>\# U=A A \prime(3 x 3), V=A^{\prime} A(4 \times 4)$
$>\mathrm{U}=\mathrm{A} \% * \% \mathrm{t}(\mathrm{A})$
$>\mathrm{V}=\mathrm{t}(\mathrm{A}) \% * \% \mathrm{~A} ; \mathrm{V}$

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	49	62	58	38
$[2]$,	62	140	-4	62
$[3]$,	58	-4	166	29
$[4]$,	38	62	29	81

Determinants

> \# U = AA' (3x3), V = A'A (4x4)
$>$ \# So rank(V) cannot exceed 3 and $\operatorname{det}(V)=0$
$>\operatorname{det}(U) ; \operatorname{det}(V)$
[1] 1490273
[1] $-3.622862 \mathrm{e}-09$

Inverse of U exists, but inverse of V does not.

Inverses

- The solve function is for solving systems of linear equations like $M \mathbf{x}=\mathbf{b}$.
- Just typing solve(M) gives M^{-1}.
> \# Recall U = AA' (3x3), V = A'A (4x4)
> solve(U)

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	0.0173505123	$-8.508508 \mathrm{e}-04$	$-1.029342 \mathrm{e}-02$
$[2]$,	-0.0008508508	$5.997559 \mathrm{e}-03$	$2.013054 \mathrm{e}-06$
$[3]$,	-0.0102934160	$2.013054 \mathrm{e}-06$	$1.264265 \mathrm{e}-02$

> solve(V)

Error in solve.default(V) : system is computationally singular: reciprocal condition number $=6.64193 \mathrm{e}-18$

Eigenvalues and eigenvectors

```
> # Recall U = AA' (3x3), V = A'A (4x4)
> eigen(U)
```

\$values
[1] $234.01162 \quad 162.89294 \quad 39.09544$
\$vectors

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	-0.6025375	0.1592598	0.78203893
$[2]$,	-0.2964610	-0.9544379	-0.03404605
$[3]$,	-0.7409854	0.2523581	-0.62229894

V should have at least one zero eigenvalue

Because A is $3 \times 4, V=A^{\prime} A$, and the rank of a product is the minimum rank of the matrices.

```
> eigen(V)
```

\$values

$$
\text { [1] } 2.340116 \mathrm{e}+02 \quad 1.628929 \mathrm{e}+02 \quad 3.909544 \mathrm{e}+01-1.012719 \mathrm{e}-14
$$

\$vectors

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	-0.4475551	0.006507269	-0.2328249	0.863391352
$[2]$,	-0.5632053	-0.604226296	-0.4014589	-0.395652773
$[3]$,	-0.5366171	0.776297432	-0.1071763	-0.312917928
$[4]$,	-0.4410627	-0.179528649	0.8792818	0.009829883

Spectral decomposition $V=C D C^{\prime}$

> eigenV = eigen(V)
> C = eigenV\$vectors; D = diag(eigenV\$values); D

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	234.0116	0.0000	0.00000	$0.000000 \mathrm{e}+00$
$[2]$,	0.0000	162.8929	0.00000	$0.000000 \mathrm{e}+00$
$[3]$,	0.0000	0.0000	39.09544	$0.000000 \mathrm{e}+00$
$[4]$,	0.0000	0.0000	0.00000	$-1.012719 \mathrm{e}-14$

> \# C is an orthoganal matrix
> $\mathrm{C} \%$ \% t (C)

$$
[, 1] \quad[, 2] \quad[, 3] \quad[, 4]
$$

[1,] $1.000000 \mathrm{e}+005.551115 \mathrm{e}-170.000000 \mathrm{e}+00-3.989864 \mathrm{e}-17$
[2,] $5.551115 \mathrm{e}-17 \quad 1.000000 \mathrm{e}+002.636780 \mathrm{e}-16 \quad 3.556183 \mathrm{e}-17$
[3,] $0.000000 \mathrm{e}+002.636780 \mathrm{e}-161.000000 \mathrm{e}+00 \quad 2.558717 \mathrm{e}-16$
[4,] -3.989864e-17 3.556183e-17 2.558717e-16 1.000000e+00

Verify $V=C D C^{\prime}$

$>\mathrm{V} ; \mathrm{C} \% * \% \mathrm{D} \% * \% \mathrm{t}$ (C)

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	49	62	58	38
$[2]$,	62	140	-4	62
$[3]$,	58	-4	166	29
$[4]$,	38	62	29	81

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	49	62	58	38
$[2]$,	62	140	-4	62
$[3]$,	58	-4	166	29
$[4]$,	38	62	29	81

Square root matrix $V^{1 / 2}=C D^{1 / 2} C^{\prime}$

```
> sqrtV = C %*% sqrt(D) %*% t(C)
Warning message:
In sqrt(D) : NaNs produced
> # Multiply to get V
> sqrtV %*% sqrtV; V
    [,1] [,2] [,3] [,4]
[1,] NaN NaN NaN NaN
[2,] NaN NaN NaN NaN
[3,] NaN NaN NaN NaN
[4,] NaN NaN NaN NaN
    [,1] [,2] [,3] [,4]
[1,] 49 62 58 38
[2,] 
[3,] 
[4,] 
```


What happened?

> D; sqrt(D)

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	234.0116	0.0000	0.00000	$0.000000 \mathrm{e}+00$
$[2]$,	0.0000	162.8929	0.00000	$0.000000 \mathrm{e}+00$
$[3]$,	0.0000	0.0000	39.09544	$0.000000 \mathrm{e}+00$
$[4]$,	0.0000	0.0000	0.00000	$-1.012719 \mathrm{e}-14$

$$
[, 1] \quad[, 2] \quad[, 3][, 4]
$$

[1,] 15.29744 0.00000 0.000000 0
[2,] $0.0000012 .762950 .000000 \quad 0$
[3,] $0.00000 \quad 0.000006 .252635 \quad 0$
[4,] $0.00000 \quad 0.000000 .000000 \mathrm{NaN}$

Warning message:
In sqrt(D) : NaNs produced

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IATEX}_{\mathrm{E}}$ source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/302f17

[^0]: ${ }^{1}$ See Chapter 2 of Linear models in statistics for more detail. This slide show is an open-source document. See last slide for copyright information.

