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Moment-generating Functions

Joint moment-generating function

Of a p-dimensional random vector x

o My(t)=F (et,x)

_ t1+xat t
o For example, M(zl,z2,13)(t17t27t3) — B (6301 1+xoto+x3 3)

o Just write M(t) if there is no ambiguity.

Section 4.3 of Linear models in statistics has some material on
moment-generating functions (optional).



Moment-generating Functions

Uniqueness

Proof omitted

Joint moment-generating functions correspond uniquely to joint
probability distributions.

e M(t) is a function of F( )
o Step One: f(x ) Bacl . ag F(x).

o For example, 671872 e fml f ynyz)dyldyz
o Step Two: M(t) = [--- [et'*f(x
o Could write M( ) =g (F(x)).

@ Uniqueness says the function g is one-to-one, so that
F(x) =g~ ' (M(t)).




ng Functions

g (M(t)) = F(x)

A two-variable example

g~ (M(t) - F(x)

g ! <ffooo [0 emtitmty fg g) dl’1d9€2> = [% [7L f(yi,y2) dyidyo
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Moment-generating Functions

Theorem

Two random vectors x; and xo are independent if and only if
the moment-generating function of their joint distribution is the
product of their moment-generating functions.



Moment-generating Functions

Proof

Two random vectors are independent if and only if the moment-generating function
of their joint distribution is the product of their moment-generating functions.

Independence therefore the MGF's factor is an exercise.

Mw1,x2 (tlatQ) = MI )sz(tQ)

< n () dﬂn) < | e e d@)
g
/]

/ etitipr2ts fay (1) [z, (x2) dx1dao

8 T

Ey
88

eMhtetz £ (21) foy (w2) dwyday
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ting Functions

Proof continued

Have le T2 tl, tQ f f mlt1+x2t2 fa:1 (xl)fm (1‘2) d.%‘ldmz.
Using F(x) = g~ (M(t)),

Fai,x9) = g ' (/ / 6““”2t2fx1(~’61)fx2($2)dﬂcldﬂfz)
v o

= / Jar (Y1) fo (y2) dyrdys

—00 J —00

— _1’2 Ja(y2) (/_5‘1 fxl(yl)dyl> dys

€2

= fm(y?) I1<$1) dyo

—00

= Fgcl(lil)/g32 fﬂc2(y2) dys
= Fxl(l‘l)sz(QZ'Q)

So that z1 and xo are independent. W
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Mome ng Functions

&

A helpful distinction

o If 1 and zo are independent,

M., (t)=M, ()M, (t)

z1+Tg z1 z2

e x1 and z9 are independent if and only if

M, ., (t1,t2) = M, (t1)M,, (t2)

xq,T9
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Moment-generating Functions

Theorem: Functions of independent random vectors are

independent

Show x; and x3 independent implies that y; = ¢1(x1) and
y2 = g2(x2) are independent.

Y1 91(x1) ty
o= ()= () mtes () e
My (t) B (JV)
- E (et'ly1+t’2yz> - E (etiylet’zyz>

- E (et'lgl (xl)etIQQZ(x?))

//etigl(X1)etégz(x2)fx1 (1) fp (x2) dx1 dx2
/et/292(x2)fx2 (x2) (/ etﬁgl(xl)fxl (x1) dxl) dxao

/etégz(xz)fXQ (x2) My, () (1) dx2
= Mgl(xl)(tl)Mgz(xz)(t2) = My, (t1) My, (t2)

So y1 and y» are independent. B 10/ 40



g Functions

Mo(t) = My(A't)

Analogue of My (t) = M, (at)

Me(t) = E(et’AX)
_ B (G(A’t)/X)
= My (A't)

Note that t is the same length as y = Ax: The number of rows
in A.
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ing Functions

Myie(t) = et My (t)

Analogue of M, .(t) = e M, (t)

Mx+c<t> — E(et/(x—i—c))
_ £ ( et’x+t’c>

_ tep ( 6t’x)

= VM (t)
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Definition

Distributions may be defined in terms of

moment-generating functions

Build up the multivariate normal from univariate normals.
o If y ~ N(u,0?), then M, (t) = ehitzo?t?

o Moment-generating functions correspond uniquely to
probability distributions.

@ So define a normal random variable with expected value p
and variance o? as a random variable with

. £ . ut+10'2t2

moment-generating function e 2 .

o This has one surprising consequence . ..



Definition

Degenerate random variables

A degenerate random variable has all the probability

concentrated at a single value, say Pr{y = yo} = 1. Then
M (t) = E(e')

=) eply)

= e - p(yp)
= e .1

eyot
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Definition

If Pr{y =y} = 1, then M (t) = e%’

o This is of the form e®+37°t" with p =1 and 0% = 0.
So y ~ N(yo,0).

That is, degenerate random variables are “normal” with
variance zero.

Call them singular normals.

This will be surprisingly handy later.



Definition

Independent standard normals




Definition

Moment-generating function of z

. 1,22
Using etttzott
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Definition

Transform z to get a general multivariate normal
Remember: A non-negative definite means v/ Av > 0

Let X be a p x p symmetric non-negative definite matrix and
peRP. Let y = X2z + p.
@ The elements of y are linear combinations of independent
standard normals.
o Linear combinations of normals should be normal.
@ y has a multivariate distribution.

o We'd like to call y a multivariate normal.



Definition

Moment-generating function of y = %12z + p
Remember: Max(t) = Mx(A't) and Mxyc(t) = etlcl\[x(t) and M, (t) = et

My(t) = le/zz_m(t)
= et“le/Qz(t)
= MM (BY?')
= MM (BY?)

— et (DR (512

_ et,IJ’ e%t’21/221/2t
ot H e%t/Et

’ 14/

So define a multivariate normal random varliable y as one with
moment-generating function M (t) = et'mtat’st
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Definition

Compare univariate and multivariate normal

moment-generating functions

. . 1 242
Univariate M, (t) = et +277"

Multivariate M, (t) = ot/ 3t/ St

So the univariate normal is a special case of the multivariate
normal with p = 1.



Mean and covariance matrix

For a univariate normal, E(y) = p and Var(y) = o

2]

Recall y = 12z + p.

Ey) = n
covly) = $Y%cov(z)sV/?
$1/2 [ y1/2
= X

We will say y is multivariate normal with expected value p and
variance-covariance matrix X, and write y ~ Np(u, X).

Note that because M, (t) = et/’”%tlm, p and ¥ completely
determine the distribution.



Properties

Probability density function of y ~ N,(u, X)

Remember, ¥ is only positive semi-definite.

It is easy to write down the density of z ~ N,(0,1) as a product
of standard normals.

If 3 is strictly positive definite (and not otherwise), the density
of y = ¥'/2z + p can be obtained using the Jacobian Theorem
as

SRS G PR
0= romr e s ws )

This is usually how the multivariate normal is defined.
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Y. positive definite?

o Positive definite means that for any non-zero p x 1 vector
a, we have a’Ya > 0.

@ Since the one-dimensional random variable w = Z?:l a;Y;
may be written as w = a’y and Var(w) = cov(a'y) = a’Xa,
it is natural to require that ¥ be positive definite.

o All it means is that every non-zero linear combination of y
values has a positive variance. Often, this is what you want.



Properties

Singular normal: X is positive semi-definite.

Suppose there is a # 0 with a’Ya = 0. Let w = a'y.

e Then Var(w) = cov(a’y) = a’¥a = 0. That is, w has a
degenerate distribution (but it’s still still normal).

o In this case we describe the distribution of y as a singular
multivariate normal.

o Including the singular case saves a lot of extra work in later
proofs.

o We will insist that a singular multivariate normal is still
multivariate normal, even though it has no density.



Properties

Distribution of Ay

Recall y ~ Np(p, X) means M, (t) = et/ H ot/

Let y ~ Np(p, %), and w = Ay, where A is an 7 X p matrix.

M, (t) = M, (t)
= M (A't)

oAt 3 (A't)T(A'L)

_ ot(An) e%t’(AEA’)t

_ et’(Au)Jr%t’(AZA’)t

Recognize moment-generating function and conclude

w ~ N, (Ap, ASA)

V)
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Exercise

Use moment-generating functions, of course.

Let y ~ Ny(p, X).

Show y + ¢ ~ N,(p + ¢, X).
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Properties

Zero covariance implies independence for the

multivariate normal.

o Independence always implies zero covariance.

o For the multivariate normal, zero covariance also implies
independence.

@ The multivariate normal is the only continuous distribution
with this property.



Properties

Show zero covariance implies independence
By showing My (t) = My, (t1) My, (t2)

Let y ~ N(p, X), with
y1 By 2 0> <t1>
= () w=() () = (R

My(t) = E ()
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g o : y / li/y
Continuing the calculation: M (t) = et#2t>t

y

) »-( o) -

1 1 ‘ 0 t1
= t1)t) (2 = (th |t
et () o {310 (51 2) (4
/ / 1 t
— tip+Htopg - t'Z t/Z 1
e exp{2 ( 1 1| 2 2) Tt

’ ’ 1
_ et1l‘«1+t2l"2 exp {5 (tllzlfq =+ t/222t2)}
etllﬂq etéﬂ'z e%(':/lzltl) e%(tézztz)

thp 3 (E]81t1) thuo+1(thX0ts)
e e

= My, (tl)Myz (t2)

So y1 and y» are independent. W 29 /40



An easy example
If you do it the easy way

Let y1 ~ N(1,2), y2 ~ N(2,4) and y3 ~ N(6,3) be independent,
with w; = y1 + y2 and ws = ys + y3. Find the joint distribution
of w1 and ws.

w\ (110 a
wy ) L0 11 Y2
Y3

w=Ay ~ N(Au, AXA")
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w = Ay ~ N(Ap, ALA)

y1 ~ N(1,2), y2 ~ N(2,4) and y3 ~ N(6,3) are independent

1
110 3
v (o)) ()
6
2 0 0 10
ANA = (1)1(1)>040 11
003/\o01

Il
= o
~
N———
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Properties

Marginal distributions are multivariate normal
v~ Np(p,X), sow = Ay ~ N(Ap, ATA")

Find the distribution of

U1
0100 Y2 1 [ Y
0001 ys |\ v
Ya

Bivariate normal. The expected value is easy.



Properties

Covariance matrix
Of Ay

cov(Ay) = AXA

0% o012 013 014 0 0
_ 01 00 01,2 a% 023 024 1 0
B <0 0 0 1> 013 023 03 034 00
014 024 034 o} 01
0 0
_ o2 03 023 024 10
o (0174 024 034 OF ) 00
01

2
_ 03 024
- 2
0‘274 0’4

Marginal distributions of a multivariate normal are multivariate
normal, with the original means, variances and covariances.



Summary

e If ¢ is a vector of constants, x + ¢ ~ N(c + u, X).
e If A is a matrix of constants, Ax ~ N(Au, ALA").

e Linear combinations of multivariate normals are
multivariate normal.

o All the marginals (dimension less than p) of x are
(multivariate) normal, but it is possible in theory to have a
collection of univariate normals whose joint distribution is
not multivariate normal.

o For the multivariate normal, zero covariance implies
independence. The multivariate normal is the only
continuous distribution with this property.



\‘~ and t distr

Showing (x — p)'Y 7 1(x — p) ~ x2(p)

Y has to be positive definite this time

X ~
y=x ~
1
7Z = 2y ~

N (1, %)
N (0, %)
N (0,2—%22—%)

1 1 1 1
N (0,2*525 2527>
N(0,1)

So z is a vector of p independent standard normals, and

p
_ _1 _1
YSly = (S 2y) (S 2y) =2z =Y 27 ~x*(p)

J=1



\‘~ and t distributions

7 and s? independent

T1,...,%n e N (u, crz)

1 —X
T

Tn

Note A is (n + 1) x n, so cov(Ax) = 02AA’ is (n +1) x (n+1),
singular.
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\‘~ and t distributions

The argument

@ y is multivariate normal because x is multivariate normal.
e Cov(Z,(x; — 7)) =0 (Exercise)
e So T and ys are independent.

e So 7 and S? = g(y2) are independent. W
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\‘~ and t distr

Leads to the ¢ distribution

If
e 2~ N(0,1) and
o y~ x?(v) and

@ z and y are independent, then we say

z

Vulv

T =

~ t(v)

38 /40



\‘~ and t distr

Random sample from a normal distribution

Let z1,..., %, b N(u,0?). Then
° @ ~ N(0,1) and
° %712)52 ~ x?(n —1) and

o These quantities are independent, so
V(@ —p)/o
Y [C=TET

A
= th(n—l)

T —
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\‘~ and t distributions

Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The IXTEX source code is available from the course
website:

http://www.utstat.toronto.edu/ ~brunner/oldclass/302f17
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