Moment-generating functions¹ STA 302: Fall 2017

 $^{^{1}\}mathrm{This}$ slide show is an open-source document. See last slide for copyright information.

The change of variables formula Let X be a random variable.

Let Y = g(X). There are two ways to get E(Y).

 \bullet Derive the distribution of Y and compute

$$E(Y) = \int_{-\infty}^{\infty} y \, f_Y(y) \, dy$$

 \bigcirc Use the distribution of X and calculate

$$E(g(X)) = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

Big theorem: These two expressions are equal.

The change of variables formula is very general Including but not limited to

$$\begin{split} E(g(X)) &= \int_{-\infty}^{\infty} g(x) \, f_X(x) \, dx \\ E(g(\mathbf{X})) &= \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1, \dots, x_p) \, f_{\mathbf{X}}(x_1, \dots, x_p) \, dx_1 \dots dx_p \\ E(g(X)) &= \sum_{x} g(x) p_X(x) \\ E(g(\mathbf{X})) &= \sum_{x_1} \cdots \sum_{x_p} g(x_1, \dots, x_p) \, p_{\mathbf{X}}(x_1, \dots, x_p) \end{split}$$

Moment-generating functions

$$M_{\boldsymbol{Y}}(t) = E(\boldsymbol{e}^{\boldsymbol{Y}t}) = \left\{ \begin{array}{l} \int_{-\infty}^{\infty} \boldsymbol{e}^{\boldsymbol{y}t} \, f_{\boldsymbol{Y}}(\boldsymbol{y}) \, d\boldsymbol{y} \\ \\ \sum_{\boldsymbol{y}} \boldsymbol{e}^{\boldsymbol{y}t} p_{\boldsymbol{Y}}(\boldsymbol{y}) \end{array} \right.$$

Properties of moment-generating functions

- Moment-generating functions can be used to generate moments. To get $E(Y^k)$, differentiate $M_Y(t)$ with respect to t. Differentiate k times and set t = 0.
- Moment-generating functions correspond uniquely to probability distributions.

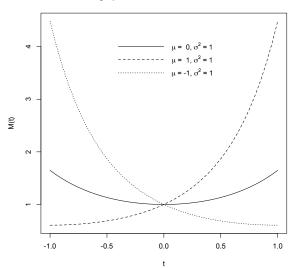
The function M(t) is like a fingerprint of the probability distribution.

$$Y \sim N(\mu, \sigma^2)$$
 if and only if $M_Y(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$.

$$Y \sim \chi^2(\nu)$$
 if and only if $M_{_Y}(t) = (1-2t)^{-\nu/2}$ for $t < \frac{1}{2}.$

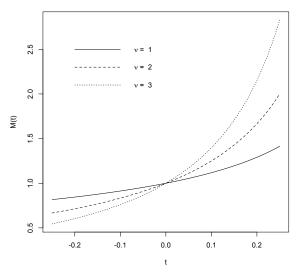
Normal: $M(t) = e^{\mu t + \frac{1}{2}\sigma^2 t^2}$

Fingerprints of the normal distribution



Chi-squared: $M(t) = (1 - 2t)^{-\nu/2}$

Fingerprints of the chi-squared distribution



Example: Using moment-generating functions to prove distribution facts

Let
$$X \sim N(\mu, \sigma^2)$$
. Show $Y = \frac{X-\mu}{\sigma} \sim N(0, 1)$

Facts about moment-generating functions Use these to find distributions of functions of random variables

- $M_{aY}(t) = M_Y(at)$
- $\bullet \ M_{Y+a}(t) = e^{at} M_Y(t)$
- If Y_1, \ldots, Y_n are independent, $M_{\sum_{i=1}^n Y_i}(t) = \prod_{i=1}^n M_{Y_i}(t)$

A standard example Using $M_{\sum_{i=1}^{n} X_i}(t) = \prod_{i=1}^{n} M_{X_i}(t)$

Let $X_1, \ldots, X_n \stackrel{i.i.d.}{\sim} N(\mu, \sigma^2)$, with $Y = \sum_{i=1}^n X_i$. Find the probability distribution of Y.

How about \overline{X} ? Recall $M_{aY}(t) = M_Y(at)$.

Another standard example

Let $X_1, \ldots, X_n \stackrel{ind.}{\sim} \chi^2(\nu_i)$, and $Y = \sum_{i=1}^n X_i$. Find the probability distribution of Y.

Less well known But very useful later

If
$$W = W_1 + W_2$$
 with W_1 and W_2 independent,
 $W \sim \chi^2(\nu_1 + \nu_2)$ and $W_2 \sim \chi^2(\nu_2)$ then $W_1 \sim \chi^2(\nu_1)$.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/302f17