Chapter One of Regression Analysis: Overview¹ STA302 Fall 2017

¹See last slide for copyright information.

Simple regression model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i,$$

where

 x_1, \ldots, x_n are observed, known constants.

 $\epsilon_1, \ldots, \epsilon_n$ are random variables satisfying the Gauss-Markov conditions.

$$E(\epsilon_i) = 0$$

$$Var(\epsilon_i) = \sigma^2$$

$$Cov(\epsilon_i, \epsilon_j) = 0 \text{ for } i \neq j.$$

 β_0 , β_1 and σ^2 are unknown constants with $\sigma^2 > 0$.

Least Squares Background that's not in the text

- The random variable y has a distribution that depends on the parameter θ .
- How can we estimate θ from data y_1, \ldots, y_n ?
- The expected value E(y) is a function of θ .
- Write it $E_{\theta}(y)$.
- Estimate θ by the value that gets the observed data values as close as possible to their expected values.
- Minimize

$$S = \sum_{i=1}^{n} (y_i - E_{\theta}(y_i))^2$$

over all θ .

• The value of θ that minimizes S is the least squares estimate.

Simplest example of least squares Again, not in the text

- y_1, \ldots, y_n all have $E(y_i) = \mu$.
- The least squares estimate of μ is the value that makes the observed y_i values as close as possible to what you would expect.
- Minimize $S = \sum_{i=1}^{n} (y_i \mu)^2$

$$\frac{dS}{d\mu} = \frac{d}{d\mu} \sum_{i=1}^{n} (y_i - \mu)^2$$

$$= \sum_{i=1}^{n} \frac{d}{d\mu} (y_i - \mu)^2$$

$$= 2 \sum_{i=1}^{n} (y_i - \mu) (-1)$$

$$\stackrel{\text{set}}{=} 0$$

Continuing the calculation: $-2\sum_{i=1}^{n} (y_i - \mu) = 0$

$$\Rightarrow \sum_{i=1}^{n} (y_i - \mu) = 0$$

$$\Rightarrow \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} \mu = 0$$

$$\Rightarrow \sum_{i=1}^{n} y_i - n\mu = 0$$

$$\Rightarrow \sum_{i=1}^{n} y_i = n\mu$$

$$\Rightarrow \mu = \frac{1}{n} \sum_{i=1}^{n} y_i = \overline{y}$$

So the least-squares estimate of μ is \overline{y} .

Least squares regression Minimize $S = \sum_{i=1}^{n} (y_i - E_{\theta}(y_i))^2$

- Model equation is $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$
- $\bullet \ E(y_i) = \beta_0 + \beta_1 x_i$
- Minimize $S = \sum_{i=1}^{n} (y_i \beta_0 \beta_1 x_i)^2$ over $\theta = (\beta_0, \beta_1)$.
- Take partial derivatives, set to zero, solve two equations in two unknowns.
- Least squares estimate of β_0 is b_0 . Least squares estimate of β_1 is b_1 .

Vocabulary and concepts A preview of almost the entire course

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

- Linear regresson means linear in the β parameters.
- Polynomial regression $y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i$, etc.
- Centered model $y_i = (\beta_0 + \beta_1 \overline{x}) + \beta_1 (x_i \overline{x}) + \epsilon_i$
- Predicted value $\hat{y}_i = b_0 + b_1 x_i$
- Residual $e_i = y_i \widehat{y}_i$
- Plotting residuals (p.5) to diagnose problems with the model.
- Gauss-Markov conditions.
- Measure of model fit R^2
- Mean and variance of b_0 and b_1 .
- Confidence intervals and tests.
- Predicting future observations.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/302f17