STA 302f17 Assignment Four¹

- 1. Independently for i = 1, ..., n, let $y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$, where the β_j are unknown constants, the x_{ij} are known, observable constants, and the ϵ_i are unobservable random variables with expected value zero. If course, values of the dependent variable y_i are observable. Start deriving the least squares estimates of β_0 , β_1 and β_2 by minimizing the sum of squared differences between the y_i and their expected values. I say *start* because you don't have to finish the job. Stop when you have three linear equations in three unknowns, arranged so they are clearly the so-called "normal" equations $X'X\beta = X'y$.
- 2. For the general linear regression model in matrix form,
 - (a) Show (there is no difference between "show" and "prove") that the matrix X'X is symmetric.
 - (b) Show that X'X is non-negative definite.
 - (c) Show that if the columns of X are linearly independent, then X'X is positive definite.
 - (d) Show that if X'X is positive definite, then $(X'X)^{-1}$ exists.
 - (e) Show that if $(X'X)^{-1}$ exists, then the columns of X are linearly independent.

This is a good problem because it establishes that the least squares estimator $\mathbf{b} = (X'X)^{-1}X'\mathbf{y}$ exists if and only if the columns of X are linearly independent, meaning that no independent variable is a linear combination of the other ones.

- 3. In the matrix version of the general linear regression model, X is $n \times (k+1)$ and y is $n \times 1$.
 - (a) What are the dimensions of the matrix H? Give the number of rows and the number of columns.
 - (b) Assuming that the column of X are linearly independent (and we always do), what is the rank of H?
 - (c) You know that the inverse of a square matrix exists if and only if its columns (and rows) are linearly independent. If n > k + 1, can H have an inverse? Answer Yes or No.
 - (d) Show that H is symmetric.
 - (e) Show that H is idempotent, meaning $H = H^2$
 - (f) Using tr(AB) = tr(BA), find tr(H).
 - (g) Show that $\widehat{\mathbf{y}} = H\mathbf{y}$.

¹Copyright information is at the end of the last page.

- (h) Show that $\mathbf{e} = (I H)\mathbf{y}$.
- (i) Show that M = I H is symmetric.
- (j) Show that M is idempotent.
- (k) Find tr(M).
- 4. Please read Chapter 2, pages 28-37 in the textbook.
 - (a) Show that $M\boldsymbol{\epsilon} = \mathbf{e}$.
 - (b) Prove Theorem 2.1 in the text.
 - (c) Why does $X'\mathbf{e} = \mathbf{0}$ tell you that if a regression model has an intercept, the residuals must add up to zero?
 - (d) Letting $\mathcal{S} = (\mathbf{y} X\boldsymbol{\beta})'(\mathbf{y} X\boldsymbol{\beta}),$
 - i. Show that $\mathcal{S} = \mathbf{e}'\mathbf{e} + (\mathbf{b} \boldsymbol{\beta})'(X'X)(\mathbf{b} \boldsymbol{\beta}).$
 - ii. Why does this imply that the minimum of $\mathcal{S}(\beta)$ occurs at $\beta = \mathbf{b}$?
 - iii. The columns of X are linearly independent. Why does linear independence guarantee that the minimum is unique?
 - (e) What are the dimensions of the random vector **b** as defined in Expression (2.9)? Give the number of rows and the number of columns.
 - (f) Is **b** an unbiased estimator of β ? Answer Yes or No and show your work.
 - (g) Calculate $cov(\mathbf{b})$ and simplify. Show your work.
 - (h) What are the dimensions of the random vector $\hat{\mathbf{y}}$?
 - (i) What is $E(\hat{\mathbf{y}})$? Show your work.
 - (j) What is $cov(\hat{\mathbf{y}})$? Show your work. It is easier if you use H.
 - (k) What are the dimensions of the random vector **e**?
 - (1) What is $E(\mathbf{e})$? Show your work. Is \mathbf{e} an unbiased estimator of $\boldsymbol{\epsilon}$? This is a trick question, and requires thought.
 - (m) What is $cov(\mathbf{e})$? Show your work. It is easier if you use I H.
 - (n) Let $s^2 = \mathbf{e'e}/(n-k-1)$ as in Expression (2.33). Show that s^2 is an unbiased estimator of σ^2 . The way this was done in lecture is preferable to the way it is done in the text, in my opinion.
 - (o) Do Exercises 2.1, 2.3 and 2.6 in the text. In 2.6, Γ orthogonal means $\Gamma' = \Gamma^{-1}$.

5. The scalar form of the general linear regression model is

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \epsilon_i,$$

where $\epsilon_1, \ldots, \epsilon_n$ are a random sample from a distribution with expected value zero and variance σ^2 . The numbers x_{ij} are known, observed constants, while β_0, \ldots, β_k and σ^2 are unknown constants (parameters). The term "random sample" means independent and identically distributed in this course, so the ϵ_i random variables have zero covariance with one another.

- (a) What is $E(y_i)$?
- (b) What is $Var(y_i)$?
- (c) What is $Cov(y_i, y_j)$ for $i \neq j$?
- (d) Defining $SSTO = \sum_{i=1}^{n} (y_i \overline{y})^2$, $SSR = \sum_{i=1}^{n} (\widehat{y}_i \overline{y})^2$ and $SSE = \sum_{i=1}^{n} (y_i \widehat{y}_i)^2$, show SSTO = SSE + SSR. I find it helpful to switch to matrix notation partway through the calculation.
- 6. "Simple" regression is just regression with a single independent variable. The model equation is $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$. Fitting this simple regression problem into the matrix framework of the general linear regression model in matrix form (see formula sheet),
 - (a) What is the X matrix?
 - (b) What is X'X? Your answer is a 2×2 matrix with a formula in each cell.
 - (c) What is X'y? Again, your answer is a matrix with a formula in each cell.
- 7. Show that for simple regression, the proportion of explained sum of squares is the square of the correlation coefficient. That is, $R^2 = \frac{SSR}{SST} = r^2$.
- 8. In simple regression through the origin, there is one independent variable and no intercept. The model is $y_i = \beta_1 x_i + \epsilon_i$.
 - (a) What is the X matrix?
 - (b) What is X'X?
 - (c) What is $X'\mathbf{y}$?
 - (d) What is $(X'X)^{-1}$?
 - (e) What is $b_1 = (X'X)^{-1}X'y$? Compare your answer to (1.22) on page 11 in the textbook.

- 9. There can even be a regression model with an intercept and no independent variables. In this case the model would be $y_i = \beta_0 + \epsilon_i$.
 - (a) Find the least squares estimator of β_0 with calculus.
 - (b) What is the X matrix?
 - (c) What is X'X?
 - (d) What is $X'\mathbf{y}$?
 - (e) What is $(X'X)^{-1}$?
 - (f) What is $b_0 = (X'X)^{-1}X'y$? Compare this with your answer to Question 9a.
- 10. The set of vectors $\mathcal{V} = \{\mathbf{v} = X\mathbf{a} : \mathbf{a} \in \mathbb{R}^{k+1}\}$ is the subset of \mathbb{R}^n consisting of linear combinations of the columns of X. That is, \mathcal{V} is the space *spanned* by the columns of X. The least squares estimator $\mathbf{b} = (X'X)^{-1}X'\mathbf{y}$ was obtained by minimizing $(\mathbf{y} X\mathbf{a})'(\mathbf{y} X\mathbf{a})$ over all $\mathbf{a} \in \mathbb{R}^{k+1}$. Thus, $\hat{\mathbf{y}} = X\mathbf{b}$ is the point in \mathcal{V} that is *closest* to the data vector \mathbf{y} . Geometrically, $\hat{\mathbf{y}}$ is the *projection* (shadow) of \mathbf{y} onto \mathcal{V} . The hat matrix H is a *projection matrix*. It projects the image on any point in \mathbb{R}^n onto \mathcal{V} . Now we will test out several consequences of this idea.
 - (a) The shadow of a point already in \mathcal{V} should be right at the point itself. Show that if $\mathbf{v} \in \mathcal{V}$, then $H\mathbf{v} = \mathbf{v}$.
 - (b) The vector of differences $\mathbf{e} = \mathbf{y} \hat{\mathbf{y}}$ should be perpendicular (at right angles) to each and every basis vector of \mathcal{V} . How is this related to Theorem 2.1?
 - (c) Show that the vector of residuals \mathbf{e} is perpendicular to any $\mathbf{v} \in \mathcal{V}$.

This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/302f17