Omitted Variables ${ }^{1}$ STA305 Fall 2016

${ }^{1}$ See last slide for copyright information.

The fixed x regression model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\cdots+\beta_{k} x_{i, k}+\epsilon_{i}, \text { with } \epsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

Think of the model as conditional given $\mathbf{X}_{i}=\mathbf{x}_{i}$.

Independence of ϵ_{i} and \mathbf{X}_{i}

- The statement $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$ is a statement about the conditional distribution of ϵ_{i} given \mathbf{X}_{i}.
- It says the density of ϵ_{i} given \mathbf{X}_{i} does not depend on \mathbf{X}_{i}.
- For convenience, assume \mathbf{X}_{i} has a density.

$$
\begin{aligned}
f_{\epsilon \mid \mathbf{x}}(\epsilon \mid \mathbf{X}) & =f_{\epsilon}(\epsilon) \\
\Rightarrow \quad \frac{f_{\epsilon, \mathbf{x}}(\epsilon, \mathbf{x})}{f_{\mathbf{x}}(\mathbf{X})} & =f_{\epsilon}(\epsilon) \\
\Rightarrow \quad f_{\epsilon, \mathbf{x}}(\epsilon, \mathbf{X}) & =f_{\mathbf{x}}(\mathbf{X}) f_{\epsilon}(\epsilon)
\end{aligned}
$$

Independence!

The fixed x regression model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\cdots+\beta_{k} x_{i, p-1}+\epsilon_{i}, \text { with } \epsilon_{i} \sim N\left(0, \sigma^{2}\right)
$$

- If viewed as conditional on \mathbf{x}_{i}, this model implies independence of ϵ_{i} and \mathbf{x}_{i}, because the conditional distribution of ϵ_{i} given \mathbf{x}_{i} does not depend on \mathbf{x}_{i}.
- What is ϵ_{i} ? Everything else that affects y_{i}.
- So the usual model says that if the independent varables are random, they have zero covaiance with all other variables that are related to y_{i}, but are not included in the model.
- For observational data, this assumption is almost always violated.
- Does it matter?

Example

Suppose that the variables X_{2} and X_{3} have an impact on Y and are correlated with X_{1}, but they are not part of the data set. The values of the dependent variable are generated as follows:

$$
y_{i}=\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} X_{i, 2}+\beta_{2} X_{i, 3}+\epsilon_{i}
$$

independently for $i=1, \ldots, n$, where $\epsilon_{i} \sim N\left(0, \sigma^{2}\right)$. The independent variables are random, with expected value and variance-covariance matrix

$$
E\left(\begin{array}{l}
X_{i, 1} \\
X_{i, 2} \\
X_{i, 3}
\end{array}\right)=\left(\begin{array}{l}
\mu_{1} \\
\mu_{2} \\
\mu_{3}
\end{array}\right) \quad \text { and } V\left(\begin{array}{c}
X_{i, 1} \\
X_{i, 2} \\
X_{i, 3}
\end{array}\right)=\left(\begin{array}{ccc}
\phi_{11} & \phi_{12} & \phi_{13} \\
& \phi_{22} & \phi_{23} \\
& & \phi_{33}
\end{array}\right)
$$

where ϵ_{i} is statistically independent of $X_{i, 1}, X_{i, 2}$ and $X_{i, 3}$.

Absorb X_{2} and X_{3}

Since X_{2} and X_{3} are not observed, they are absorbed by the intercept and error term.

$$
\begin{aligned}
y_{i} & =\beta_{0}+\beta_{1} X_{i, 1}+\beta_{2} X_{i, 2}+\beta_{2} X_{i, 3}+\epsilon_{i} \\
& =\left(\beta_{0}+\beta_{2} \mu_{2}+\beta_{3} \mu_{3}\right)+\beta_{1} X_{i, 1}+\left(\beta_{2} X_{i, 2}+\beta_{3} X_{i, 3}-\beta_{2} \mu_{2}-\beta_{3} \mu_{3}+\epsilon_{i}\right) \\
& =\beta_{0}^{*}+\beta_{1} X_{i, 1}+\epsilon_{i}^{*} .
\end{aligned}
$$

And,

$$
\operatorname{Cov}\left(X_{i, 1}, \epsilon_{i}^{*}\right)=\beta_{2} \phi_{12}+\beta_{3} \phi_{13} \neq 0
$$

The "True" Model

Almost always closer to the truth than the usual model, for observational data

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}
$$

where $E\left(x_{i}\right)=\mu_{x}, \operatorname{Var}\left(x_{i}\right)=\sigma_{x}^{2}, E\left(\epsilon_{i}\right)=0, \operatorname{Var}\left(\epsilon_{i}\right)=\sigma_{\epsilon}^{2}$, and $\operatorname{Cov}\left(x_{i}, \epsilon_{i}\right)=c$.

Under this model,

$$
\sigma_{x y}=\operatorname{Cov}\left(x_{i}, y_{i}\right)=\operatorname{Cov}\left(x_{i}, \beta_{0}+\beta_{1} x_{i}+\epsilon_{i}\right)=\beta_{1} \sigma_{x}^{2}+c
$$

Estimate β_{1} as usual

$$
\begin{aligned}
\widehat{\beta}_{1} & =\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)\left(y_{i}-\bar{Y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}} \\
& =\frac{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)\left(y_{i}-\bar{Y}\right)}{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{X}\right)^{2}} \\
& =\frac{\widehat{\sigma}_{x y}}{\widehat{\sigma}_{x}^{2}} \\
& \xrightarrow[\rightarrow]{\text { a.s. }} \frac{\sigma_{x y}}{\sigma_{x}^{2}} \\
& =\frac{\beta_{1} \sigma_{x}^{2}+c}{\sigma_{x}^{2}} \\
& =\beta_{1}+\frac{c}{\sigma_{x}^{2}}
\end{aligned}
$$

$\widehat{\beta}_{1} \xrightarrow{a_{s}} \beta_{1}+\frac{c}{\sigma_{4}}$

- $\widehat{\beta}_{1}$ is biased (Exercise)
- It's inconsistent.
- It could be almost anything, depending on the value of c, the covariance between x_{i} and ϵ_{i}.
- The only time $\widehat{\beta}_{1}$ behaves properly is when $c=0$.
- Test $H_{0}: \beta_{1}=0$: Probability of Type I error goes almost surely to one.
- What if $\beta_{1}<0$ but $\beta_{1}+\frac{c}{\sigma_{x}^{2}}>0$, and you test $H_{0}: \beta_{1}=0$?

All this applies to multiple regression

When a regression model fails to include all the independent variables that contribute to the dependent variable, and those omitted independent variables have non-zero covariance with variables that are in the model, the regression coefficients are biased and inconsistent.

Correlation-Causation

- The problem of omitted variables is the technical version of the correlation-causation issue.
- The omitted variables are "confounding" variables.
- With random assignment and good procedure, x and ϵ have zero covariance.
- But random assignment is not always possible.
- Most applications of regression to observational data provide very poor information about the regression coefficients.
- Is bad information better than no information at all?
- Ultimately the solution is better data - different data.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistics, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The ${ }^{\mathrm{LA}} \mathrm{TEX}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/302f16

