Chapter One of Regression Analysis: Overview ${ }^{1}$ STA302 Fall 2016
${ }^{1}$ See last slide for copyright information.

Simple regression model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i},
$$

where
x_{1}, \ldots, x_{n} are observed, known constants.
$\epsilon_{1}, \ldots, \epsilon_{n}$ are random variables satisfying the Gauss-Markov conditions.

$$
E\left(\epsilon_{i}\right)=0
$$

$$
\operatorname{Var}\left(\epsilon_{i}\right)=\sigma^{2}
$$

$$
\operatorname{Cov}\left(\epsilon_{i}, \epsilon_{j}\right)=0 \text { for } i \neq j .
$$

β_{0}, β_{1} and σ^{2} are unknown constants with $\sigma^{2}>0$.

Least Squares

- The random variable y has a distribution that depends on the parameter θ.
- How can we estimate θ from data y_{1}, \ldots, y_{n} ?
- The expected value $E(y)$ is a function of θ.
- Write it $E_{\theta}(y)$.
- Estimate θ by the value that gets the observed data values as close as possible to their expected values.
- Minimize

$$
\mathcal{S}=\sum_{i=1}^{n}\left(y_{i}-E_{\theta}\left(y_{i}\right)\right)^{2}
$$

over all θ.

- The value of θ that minimizes \mathcal{S} is the least squares estimate.

Least squares regression

 Minimize $\mathcal{S}=\sum_{i=1}^{n}\left(y_{i}-E_{\theta}\left(y_{i}\right)\right)^{2}$- Model equation is $y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$
- $E\left(y_{i}\right)=\beta_{0}+\beta_{1} x_{i}$
- Minimize $\mathcal{S}=\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}$ over $\theta=\left(\beta_{0}, \beta_{1}\right)$.
- Take partial derivatives, set to zero, solve two equations in two unknowns.
- Least squares estimate of β_{0} is b_{0}. Least squares estimate of β_{1} is b_{1}.

Vocabulary and concepts

$y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$

- Linear regresson means linear in the β parameters.
- Polynomial regression $y_{i}=\beta_{0}+\beta_{1} x_{i}+\beta_{2} x_{i}^{2}+\epsilon_{i}$, etc.
- Centered model $y_{i}=\left(\beta_{0}+\beta_{1} \bar{x}\right)+\beta_{1}\left(x_{i}-\bar{x}\right)+\epsilon_{i}$
- Predicted value $\widehat{y}_{i}=b_{0}+b_{1} x_{i}$
- Residual $e_{i}=y_{i}-\widehat{y}_{i}$
- Plotting residuals (p.5) to diagnose problems with the model.
- Gauss-Markov conditions.
- Measure of model fit R^{2}
- Mean and variance of b_{0} and b_{1}.
- Confidence intervals and tests.
- Predicting future observations.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IAT}_{E} X$ source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/302f16

