STA 302f16 Assignment Four¹

The general linear regression model is $\mathbf{y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$, where X is an $n \times (k+1)$ matrix of observable constants, $\boldsymbol{\beta}$ is a $(k+1) \times 1$ vector of unknown constants (parameters), and $\boldsymbol{\epsilon}$ is an $n \times 1$ vector of unobservable random variables with $E(\boldsymbol{\epsilon}) = \mathbf{0}$ and $cov(\boldsymbol{\epsilon}) = \sigma^2 I_n$. The error variance $\sigma^2 > 0$ is an unknown constant parameter.

- 1. For the general linear regression model,
 - (a) Show (there is no difference between "show" and "prove") that the matrix X'X is symmetric.
 - (b) Show that X'X is non-negative definite.
 - (c) Show that if the columns of X are linearly independent, then X'X is positive definite.
 - (d) Show that if X'X is positive definite, then $(X'X)^{-1}$ exists.
 - (e) Show that if $(X'X)^{-1}$ exists, then the columns of X are linearly independent.

This is a good problem because it establishes that the least squares estimator $\mathbf{b} = (X'X)^{-1}X'\mathbf{y}$ exists if and only if the columns of X are linearly independent, meaning that no independent variable is a linear combination of the other ones.

- 2. Let $\hat{\mathbf{y}} = X\mathbf{b} = H\mathbf{y}$, where $H = X(X'X)^{-1}X'$. The residuals are in the vector $\mathbf{e} = \mathbf{y} \hat{\mathbf{y}}$.
 - (a) What are the dimensions of the matrix H? Give the number of rows and the number of columns.
 - (b) Show that H is symmetric.
 - (c) Show that H is idempotent, meaning $H = H^2$
 - (d) Using tr(AB) = tr(BA), find tr(H).
 - (e) Show that $\mathbf{e} = (I H)\mathbf{y}$.
 - (f) Show that M = I H is symmetric.
 - (g) Show that M is idempotent.
 - (h) Using tr(AB) = tr(BA), find tr(M).
- 3. Please read Chapter 2, pages 28-37 in the textbook.
 - (a) This question starts with something you have already done. For the case of simple regression with k = 1 independent variables, partially differentiate S defined in the first line of (2.6) with respect the β_0 and β_1 . Set both derivatives to zero, obtaining two equations in two unknowns. Now here's the new part. Write these equations in matrix form, obtaining a special case of (2.8).

¹Copyright information is at the end of the last page.

i. What is the X'X matrix? It is a 2×2 matrix with a formula in each cell.

- ii. What is the $X'\mathbf{y}$ matrix? It is a 2×1 matrix with a formula in each cell.
- (b) Show that $M\boldsymbol{\epsilon} = \mathbf{e}$.
- (c) Prove that $X'\mathbf{e} = \mathbf{0}$. If the statement is false (not true in general), explain why it is false.
- (d) Prove Theorem 2.1 in the text. I know this is a bit redundant.
- (e) Why does $X'\mathbf{e} = \mathbf{0}$ tell you that if a regression model has an intercept, the residuals must add up to zero?
- (f) Letting $\mathcal{S} = (\mathbf{y} X\boldsymbol{\beta})'(\mathbf{y} X\boldsymbol{\beta})$, show that

$$\mathcal{S} = (\mathbf{y} - X\mathbf{b})'(\mathbf{y} - X\mathbf{b}) + (\mathbf{b} - \boldsymbol{\beta})'(X'X)(\mathbf{b} - \boldsymbol{\beta}).$$

Why does this imply that the minimum of $\mathcal{S}(\beta)$ occurs at $\beta = \mathbf{b}$? The columns of X are linearly independent. Why does linear independence guarantee that the minimum is unique?

- (g) What are the dimensions of the random vector \mathbf{b} as defined in Expression (2.9)?
- (h) Is **b** an unbiased estimator of β ? Answer Yes or No and show your work.
- (i) Calculate $cov(\mathbf{b})$ and simplify. Show your work.
- (j) What are the dimensions of the random vector $\hat{\mathbf{y}}$?
- (k) What is $E(\hat{\mathbf{y}})$? Show your work.
- (1) What is $cov(\hat{\mathbf{y}})$? Show your work. It is easier if you use H.
- (m) What are the dimensions of the random vector \mathbf{e} ?
- (n) What is $E(\mathbf{e})$? Show your work. Is \mathbf{e} an unbiased estimator of $\boldsymbol{\epsilon}$? This is a trick question, and requires thought.
- (o) What is $cov(\mathbf{e})$? Show your work. It is easier if you use I H.
- (p) Prove $E(e'e) = \sigma^2(n k 1)$
- (q) Do Exercises 2.1, 2.3 and 2.6 in the text.
- 4. The scalar form of the general linear regression model is

$$y_i = \beta_0 + \beta_1 x_{i1} + \dots + \beta_k x_{ik} + \epsilon_i,$$

where $\epsilon_1, \ldots, \epsilon_n$ are a random sample from a distribution with expected value zero and variance σ^2 . The numbers x_{ij} are known, observed constants, while β_0, \ldots, β_k and σ^2 are unknown constants (parameters). The term "ranom sample" means independent and identically distributed in this course, so the ϵ_i random variables have zero covariance with one another.

(a) What is $E(y_i)$?

- (b) What is $Var(y_i)$?
- (c) What is $Cov(y_i, y_j)$ for $i \neq j$?
- 5. In simple regression through the origin, there is one independent variable and no intercept. The model is $y_i = \beta_1 x_i + \epsilon_i$.
 - (a) What is the X matrix?
 - (b) What is X'X?
 - (c) What is $X'\mathbf{y}$?
 - (d) What is $(X'X)^{-1}$?
 - (e) What is $b_1 = (X'X)^{-1}X'\mathbf{y}$? Compare your answer to (1.22) on page 11 in the textbook.
- 6. There can even be a regression model with an intercept and no independent variables. In this case the model would be $y_i = \beta_0 + \epsilon_i$.
 - (a) Find the least squares estimator of β_0 with calculus.
 - (b) What is the X matrix?
 - (c) What is X'X?
 - (d) What is $X'\mathbf{y}$?
 - (e) What is $(X'X)^{-1}$?
 - (f) What is $b_0 = (X'X)^{-1}X'\mathbf{y}$? Compare this with your answer to Question 6a.
- 7. The set of vectors $\mathcal{V} = \{\mathbf{v} = X\mathbf{a} : \mathbf{a} \in \mathbb{R}^{k+1}\}$ is the subset of \mathbb{R}^n consisting of linear combinations of the columns of X. That is, \mathcal{V} is the space *spanned* by the columns of X. The least squares estimator $\mathbf{b} = (X'X)^{-1}X'\mathbf{y}$ was obtained by minimizing $(\mathbf{y} X\mathbf{a})'(\mathbf{y} X\mathbf{a})$ over all $\mathbf{a} \in \mathbb{R}^{k+1}$. Thus, $\hat{\mathbf{y}} = X\mathbf{b}$ is the point in \mathcal{V} that is *closest* to the data vector \mathbf{y} . Geometrically, $\hat{\mathbf{y}}$ is the *projection* (shadow) of \mathbf{y} onto \mathcal{V} . The hat matrix H is a *projection matrix*. It projects the image on any point in \mathbb{R}^n onto \mathcal{V} . Now we will test out several consequences of this idea.
 - (a) The shadow of a point already in \mathcal{V} should be right at the point itself. Show that if $\mathbf{v} \in \mathcal{V}$, then $H\mathbf{v} = \mathbf{v}$.
 - (b) The vector of differences $\mathbf{e} = \mathbf{y} \hat{\mathbf{y}}$ should be perpendicular (at right angles) to each and every basis vector of \mathcal{V} . How is this related to Question 3c?
 - (c) Show that the vector of residuals \mathbf{e} is perpendicular to any $\mathbf{v} \in \mathcal{V}$.

This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/302f16