STA 302f16 Assignment Four ${ }^{1}$

The general linear regression model is $\mathbf{y}=X \boldsymbol{\beta}+\boldsymbol{\epsilon}$, where X is an $n \times(k+1)$ matrix of observable constants, $\boldsymbol{\beta}$ is a $(k+1) \times 1$ vector of unknown constants (parameters), and $\boldsymbol{\epsilon}$ is an $n \times 1$ vector of unobservable random variables with $E(\boldsymbol{\epsilon})=\mathbf{0}$ and $\operatorname{cov}(\boldsymbol{\epsilon})=\sigma^{2} I_{n}$. The error variance $\sigma^{2}>0$ is an unknown constant parameter.

1. For the general linear regression model,
(a) Show (there is no difference beween "show" and "prove") that the matrix $X^{\prime} X$ is symmetric.
(b) Show that $X^{\prime} X$ is non-negative definite.
(c) Show that if the columns of X are linearly independent, then $X^{\prime} X$ is positive definite.
(d) Show that if $X^{\prime} X$ is positive definite, then $\left(X^{\prime} X\right)^{-1}$ exists.
(e) Show that if $\left(X^{\prime} X\right)^{-1}$ exists, then the columns of X are linearly independent.

This is a good problem because it establishes that the least squares estimator $\mathbf{b}=$ $\left(X^{\prime} X\right)^{-1} X^{\prime} y$ exists if and only if the columns of X are linearly independent, meaning that no independent variable is a linear combination of the other ones.
2. Let $\widehat{\mathbf{y}}=X \mathbf{b}=H \mathbf{y}$, where $H=X\left(X^{\prime} X\right)^{-1} X^{\prime}$. The residuals are in the vector $\mathbf{e}=\mathbf{y}-\widehat{\mathbf{y}}$.
(a) What are the dimensions of the matrix H ? Give the number of rows and the number of columns.
(b) Show that H is symmetric.
(c) Show that H is idempotent, meaning $H=H^{2}$
(d) Using $\operatorname{tr}(A B)=\operatorname{tr}(B A)$, find $\operatorname{tr}(H)$.
(e) Show that $\mathbf{e}=(I-H) \mathbf{y}$.
(f) Show that $M=I-H$ is symmetric.
(g) Show that M is idempotent.
(h) Using $\operatorname{tr}(A B)=\operatorname{tr}(B A)$, find $\operatorname{tr}(M)$.
3. Please read Chapter 2, pages 28-37 in the textbook.
(a) This question starts with something you have already done. For the case of simple regression with $k=1$ independent variables, partially differentiate \mathcal{S} - defined in the first line of (2.6) - with respect the β_{0} and β_{1}. Set both derivatives to zero, obtaining two equations in two unknowns. Now here's the new part. Write these equations in matrix form, obtaining a special case of (2.8).

[^0]i. What is the $X^{\prime} X$ matrix? It is a 2×2 matrix with a formula in each cell.
ii. What is the $X^{\prime} \mathbf{y}$ matrix? It is a 2×1 matrix with a formula in each cell.
(b) Show that $M \boldsymbol{\epsilon}=\mathbf{e}$.
(c) Prove that $X^{\prime} \mathbf{e}=\mathbf{0}$. If the statement is false (not true in general), explain why it is false.
(d) Prove Theorem 2.1 in the text. I know this is a bit redundant.
(e) Why does $X^{\prime} \mathbf{e}=\mathbf{0}$ tell you that if a regression model has an intercept, the residuals must add up to zero?
(f) Letting $\mathcal{S}=(\mathbf{y}-X \boldsymbol{\beta})^{\prime}(\mathbf{y}-X \boldsymbol{\beta})$, show that
$$
\mathcal{S}=(\mathbf{y}-X \mathbf{b})^{\prime}(\mathbf{y}-X \mathbf{b})+(\mathbf{b}-\boldsymbol{\beta})^{\prime}\left(X^{\prime} X\right)(\mathbf{b}-\boldsymbol{\beta})
$$

Why does this imply that the minimum of $\mathcal{S}(\boldsymbol{\beta})$ occurs at $\boldsymbol{\beta}=\mathbf{b}$? The columns of X are linearly independent. Why does linear independence guarantee that the minimum is unique?
(g) What are the dimensions of the random vector \mathbf{b} as defined in Expression (2.9)?
(h) Is \mathbf{b} an unbiased estimator of $\boldsymbol{\beta}$? Answer Yes or No and show your work.
(i) Calculate $\operatorname{cov}(\mathbf{b})$ and simplify. Show your work.
(j) What are the dimensions of the random vector $\widehat{\mathbf{y}}$?
(k) What is $E(\widehat{\mathbf{y}})$? Show your work.
(l) What is $\operatorname{cov}(\widehat{\mathbf{y}})$? Show your work. It is easier if you use H.
(m) What are the dimensions of the random vector \mathbf{e} ?
(n) What is $E(\mathbf{e})$? Show your work. Is \mathbf{e} an unbiased estimator of $\boldsymbol{\epsilon}$? This is a trick question, and requires thought.
(o) What is $\operatorname{cov}(\mathbf{e})$? Show your work. It is easier if you use $I-H$.
(p) Prove $E\left(\mathbf{e}^{\prime} \mathbf{e}\right)=\sigma^{2}(n-k-1)$
(q) Do Exercises 2.1, 2.3 and 2.6 in the text.
4. The scalar form of the general linear regression model is

$$
y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{k} x_{i k}+\epsilon_{i}
$$

where $\epsilon_{1}, \ldots, \epsilon_{n}$ are a random sample from a distribution with expected value zero and variance σ^{2}. The numbers $x_{i j}$ are known, observed constants, while $\beta_{0}, \ldots, \beta_{k}$ and σ^{2} are unknown constants (parameters). The term "ranom sample" means independent and identically distributed in this course, so the ϵ_{i} random variables have zero covariance with one another.
(a) What is $E\left(y_{i}\right)$?
(b) What is $\operatorname{Var}\left(y_{i}\right)$?
(c) What is $\operatorname{Cov}\left(y_{i}, y_{j}\right)$ for $i \neq j$?
5. In simple regression through the origin, there is one independent variable and no intercept. The model is $y_{i}=\beta_{1} x_{i}+\epsilon_{i}$.
(a) What is the X matrix?
(b) What is $X^{\prime} X$?
(c) What is $X^{\prime} \mathbf{y}$?
(d) What is $\left(X^{\prime} X\right)^{-1}$?
(e) What is $b_{1}=\left(X^{\prime} X\right)^{-1} X^{\prime} \mathbf{y}$? Compare your answer to (1.22) on page 11 in the textbook.
6. There can even be a regression model with an intercept and no independent variables. In this case the model would be $y_{i}=\beta_{0}+\epsilon_{i}$.
(a) Find the least squares estimator of β_{0} with calculus.
(b) What is the X matrix?
(c) What is $X^{\prime} X$?
(d) What is $X^{\prime} y$?
(e) What is $\left(X^{\prime} X\right)^{-1}$?
(f) What is $b_{0}=\left(X^{\prime} X\right)^{-1} X^{\prime} \mathbf{y}$? Compare this with your answer to Question 6a.
7. The set of vectors $\mathcal{V}=\left\{\mathbf{v}=X \mathbf{a}: \mathbf{a} \in \mathbb{R}^{k+1}\right\}$ is the subset of \mathbb{R}^{n} consisting of linear combinations of the columns of X. That is, \mathcal{V} is the space spanned by the columns of X. The least squares estimator $\mathbf{b}=\left(X^{\prime} X\right)^{-1} X^{\prime} \mathbf{y}$ was obtained by minimizing $(\mathbf{y}-X \mathbf{a})^{\prime}(\mathbf{y}-X \mathbf{a})$ over all $\mathbf{a} \in \mathbb{R}^{k+1}$. Thus, $\widehat{\mathbf{y}}=X \mathbf{b}$ is the point in \mathcal{V} that is closest to the data vector \mathbf{y}. Geometrically, $\widehat{\mathbf{y}}$ is the projection (shadow) of \mathbf{y} onto \mathcal{V}. The hat matrix H is a projection matrix. It projects the image on any point in \mathbb{R}^{n} onto \mathcal{V}. Now we will test out several consequences of this idea.
(a) The shadow of a point already in \mathcal{V} should be right at the point itself. Show that if $\mathbf{v} \in \mathcal{V}$, then $H \mathbf{v}=\mathbf{v}$.
(b) The vector of differences $\mathbf{e}=\mathbf{y}-\widehat{\mathbf{y}}$ should be perpendicular (at right angles) to each and every basis vector of \mathcal{V}. How is this related to Question 3c?
(c) Show that the vector of residuals \mathbf{e} is perpendicular to any $\mathbf{v} \in \mathcal{V}$.

This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/302f16

[^0]: ${ }^{1}$ Copyright information is at the end of the last page.

