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1. Let Y1, . . . , Yn be independent scalar (not matrix) random variables with E(Yi) = µ and12 points
V ar(Yi) = σ2 for i = 1, . . . , n.

(a) Let c1, . . . , cn be constants and define the linear combination L by L =
∑n

i=1 ciYi. What
condition on the ci values makes L an unbiased estimator of µ? Show your work.

(b) What is the variance of the linear combination L? Show a little work.

(c) Show that if the linear combination L is unbiased for µ, the constants ci that make
variance of L as small as possible are ci = 1

n for i = 1, . . . , n. That is, the sample mean
is the Best Linear Unbiased Estimator (BLUE).

continued on page 3
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2. Let the p× 1 random vector Y have mean µ and variance-covariance matrix Σ, and let c be8 points
a p× 1 vector of constants. Choose one of the statements below and prove it is true.

cov(Y + c) = Σ cov(Y + c) = Σ + cc′ cov(Y + c) = cΣc′ cov(Y + c) = 0

3. Show that if Y ∼ Np(µ,Σ), then AY ∼ Nq(Aµ,AΣA′). You are proving something on the8 points
formula sheet, so you may use anything on the formula sheet except what you are proving.

continued on page 4
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4. For the linear regression model Y = Xβ + ε, prove that if the columns of X are linearly10 points
dependent, the least squares estimator β̂ does not exist. You have more room than you need.

continued on page 5
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5. Show SST = SSR + SSE. You are proving something on the formula sheet, so you may use15 points
anything on the formula sheet except what you are proving. Assume that the regression model
has an intercept, so that

∑n
i=1 Ŷi =

∑n
i=1 Yi.

continued on page 6
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continued on page 7
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6. For the linear regression model Y = Xβ + ε with normal errors,14 points

(a) What is the distribution of Cβ̂? Note C is q × (k + 1). Just write down the answer.

(b) If H0 : Cβ = t is true, what is the distribution of (Cβ̂− t)′(σ2C(X′X)−1C′)−1(Cβ̂− t)?
Just write down the answer.

(c) Using what you have just shown, complete the proof that the F statistic on the formula
sheet does indeed have an F distribution when the null hypothesis is true. You may use
anything from the formula sheet except what you are proving.

continued on page 8
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continued on page 9
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7. Assume that the independent variables in a regression model are actually random variables5 points
rather than fixed constants. In this case, the usual fixed-x regression model is a conditional
model, in which all the usual results hold conditionally upon X = x. Using the fact that
E(β̂|X) = β, show that E(β̂) = β, so that the usual estimator is unbiased even when X is
random.

8. As in the prededing question, assume that the usual linear regression model is a conditional5 points
one. Let Xi denote the k × 1 random vector of independent variable values for observation
i. The conditional model with normal error terms says that the conditional distribution of
εi given Xi = xi is N(0, σ2). Show how this implies that Xi and εi are independent. For
convenience, you may assume that Xi has a density.

continued on page 10
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9. This question is based on an analysis of the birthweight data with R. Assume the usual23 points
α = 0.05 significance level. First comes just the input, then the questions, and finally a
complete listing of the input and output.

library(MASS); attach(birthwt); head(birthwt)

n = length(age); n

mean(age)

# For race, 1=White, 2=Black, 3=Other

r2=numeric(n); r2[race==2]=1

r3=numeric(n); r3[race==3]=1

babysweight = bwt

momsweight = lwt-mean(lwt) # Mom’s weight is centered

r2mw = r2*momsweight; r3mw = r3*momsweight

modelA = lm(babysweight ~ momsweight)

modelB = lm(babysweight ~ momsweight + r2 + r3)

modelC = lm(babysweight ~ momsweight + r2 + r3 + r2mw + r3mw)

anova(modelA,modelB)

anova(modelB,modelC)

summary(modelC)

# Now look at Model B

summary(modelB)

# Some additional t-tests on Model B

V = vcov(modelB); betahat=modelB$coefficients

dfe = modelB$df.residual # dfe = n-k-1

a = rbind(1,0,0,0)

T = as.numeric( t(a)%*%betahat/sqrt(t(a)%*%V%*%a) )

p = 2*(1-pt(abs(T),dfe)); T; p

a = rbind(1,0,-1/2,-1/2)

T = as.numeric( t(a)%*%betahat/sqrt(t(a)%*%V%*%a) )

p = 2*(1-pt(abs(T),dfe)); T; p

a = rbind(0,1,-1,0)

T = as.numeric( t(a)%*%betahat/sqrt(t(a)%*%V%*%a) )

p = 2*(1-pt(abs(T),dfe)); T; p

a = rbind(0,1,0,-1)

T = as.numeric( t(a)%*%betahat/sqrt(t(a)%*%V%*%a) )

p = 2*(1-pt(abs(T),dfe)); T; p

a = rbind(0,0,1,-1)

T = as.numeric( t(a)%*%betahat/sqrt(t(a)%*%V%*%a) )

p = 2*(1-pt(abs(T),dfe)); T; p

a = rbind(0,0,1,1)

T = as.numeric( t(a)%*%betahat/sqrt(t(a)%*%V%*%a) )

p = 2*(1-pt(abs(T),dfe)); T; p

continued on page 11
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(a) Is there evidence that the slope of the regression line relating mother’s weight to baby’s
weight is different for Black mothers and White mothers? Give two numbers and the
word “Yes” or “No.”

Test Statistic (F or t) p-value Answer Yes or No

(b) Is there evidence that race differences in baby’s weight depend on the weight of the
mother? Give two numbers and the word “Yes” or “No.”

Test Statistic (F or t) p-value Answer Yes or No

For the rest of the questions, please treat Model B as the full model.

(c) Allowing for mother’s race, is there evidence that baby’s weight is related to mother’s
weight? Give two numbers and the word “Yes” or “No.”

Test Statistic (F or t) p-value Answer Yes or No

(d) If the answer to the last question was “Yes,” describe the results in plain, non-statistical
language.

(e) Give an estimate of expected baby’s weight for White mothers of average (sample mean)
weight. The answer is a number.

(f) Give an estimate of expected baby’s weight for B;ack mothers of average (sample mean)
weight. The answer is a number.

(g) Give an estimate of expected baby’s weight for Other mothers of average (sample mean)
weight. The answer is a number.

(h) Allowing for mother’s weight, is there evidence that baby’s weight is related to mother’s
race? Give two numbers and the word “Yes” or “No.”

Test Statistic (F or t) p-value Answer Yes or No

continued on page 12
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(i) In the table below, fill in the p-values for the pairwise comparisons of racial groups,
comparing expected baby’s weight controlling for mother’s weight.

White Black Other

White x

Black x x

Other x x x

(j) Describe the results of the pairwise comparisons in plain, non-statistical language. You
may begin your answer with “Allowing for mother’s weight, . . . ”

That’s the end of the exam questions. The rest of the exam paper consists of R
input and output.

> library(MASS); attach(birthwt); head(birthwt)

low age lwt race smoke ptl ht ui ftv bwt

85 0 19 182 2 0 0 0 1 0 2523

86 0 33 155 3 0 0 0 0 3 2551

87 0 20 105 1 1 0 0 0 1 2557

88 0 21 108 1 1 0 0 1 2 2594

89 0 18 107 1 1 0 0 1 0 2600

91 0 21 124 3 0 0 0 0 0 2622

> n = length(age); n

[1] 189

> mean(age)

[1] 23.2381

> # For race, 1=White, 2=Black, 3=Other

> r2=numeric(n); r2[race==2]=1

> r3=numeric(n); r3[race==3]=1

> babysweight = bwt

> momsweight = lwt-mean(lwt) # Mom’s weight is centered

> r2mw = r2*momsweight; r3mw = r3*momsweight

>

> modelA = lm(babysweight ~ momsweight)

> modelB = lm(babysweight ~ momsweight + r2 + r3)

> modelC = lm(babysweight ~ momsweight + r2 + r3 + r2mw + r3mw)

>

> anova(modelA,modelB)

Analysis of Variance Table

Model 1: babysweight ~ momsweight

Model 2: babysweight ~ momsweight + r2 + r3

Res.Df RSS Df Sum of Sq F Pr(>F)

1 187 96521017

2 185 91444408 2 5076610 5.1352 0.006753 **

continued on page 13
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---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

> anova(modelB,modelC)

Analysis of Variance Table

Model 1: babysweight ~ momsweight + r2 + r3

Model 2: babysweight ~ momsweight + r2 + r3 + r2mw + r3mw

Res.Df RSS Df Sum of Sq F Pr(>F)

1 185 91444408

2 183 91150564 2 293844 0.295 0.7449

>

> summary(modelC)

Call:

lm(formula = babysweight ~ momsweight + r2 + r3 + r2mw + r3mw)

Residuals:

Min 1Q Median 3Q Max

-2096.19 -450.29 55.55 493.54 1932.54

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3091.532 72.246 42.792 <2e-16 ***

momsweight 5.000 2.489 2.009 0.0460 *

r2 -413.101 167.446 -2.467 0.0145 *

r3 -226.272 117.479 -1.926 0.0556 .

r2mw -2.572 4.344 -0.592 0.5545

r3mw 1.120 4.260 0.263 0.7929

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 705.8 on 183 degrees of freedom

Multiple R-squared: 0.08822,Adjusted R-squared: 0.06331

F-statistic: 3.541 on 5 and 183 DF, p-value: 0.004429

>

> # Now look at Model B

> summary(modelB)

Call:

lm(formula = babysweight ~ momsweight + r2 + r3)

Residuals:

Min 1Q Median 3Q Max

-2096.21 -419.56 41.39 478.57 1929.49

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3092.285 71.863 43.031 < 2e-16 ***

momsweight 4.663 1.750 2.665 0.00839 **

r2 -451.838 157.566 -2.868 0.00462 **

r3 -241.301 113.887 -2.119 0.03544 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

continued on page 14
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Residual standard error: 703.1 on 185 degrees of freedom

Multiple R-squared: 0.08528,Adjusted R-squared: 0.07045

F-statistic: 5.749 on 3 and 185 DF, p-value: 0.000881

> # Some additional t-tests on Model B

> V = vcov(modelB); betahat=modelB$coefficients

> dfe = modelB$df.residual # dfe = n-k-1

>

> a = rbind(1,0,0,0)

> T = as.numeric( t(a)%*%betahat/sqrt(t(a)%*%V%*%a) )

> p = 2*(1-pt(abs(T),dfe)); T; p

[1] 43.03055

[1] 0

>

> a = rbind(1,0,-1/2,-1/2)

> T = as.numeric( t(a)%*%betahat/sqrt(t(a)%*%V%*%a) )

> p = 2*(1-pt(abs(T),dfe)); T; p

[1] 20.85298

[1] 0

>

> a = rbind(0,1,-1,0)

> T = as.numeric( t(a)%*%betahat/sqrt(t(a)%*%V%*%a) )

> p = 2*(1-pt(abs(T),dfe)); T; p

[1] 2.891767

[1] 0.004289915

>

> a = rbind(0,1,0,-1)

> T = as.numeric( t(a)%*%betahat/sqrt(t(a)%*%V%*%a) )

> p = 2*(1-pt(abs(T),dfe)); T; p

[1] 2.165632

[1] 0.03161921

>

> a = rbind(0,0,1,-1)

> T = as.numeric( t(a)%*%betahat/sqrt(t(a)%*%V%*%a) )

> p = 2*(1-pt(abs(T),dfe)); T; p

[1] -1.245203

[1] 0.2146321

>

> a = rbind(0,0,1,1)

> T = as.numeric( t(a)%*%betahat/sqrt(t(a)%*%V%*%a) )

> p = 2*(1-pt(abs(T),dfe)); T; p

[1] -3.196971

[1] 0.001633545

>

Total Marks = 100 points


