A Brief Introduction to R

```
> 1+1
[1] 2
> 2^3 # Two to the power 3
[1] 8
> 1:30
    [1] 1rrrrrrrrrrrrrrllllllllllllllllllll
    [26] 26 27 28 29 30
> gamma(.5)^2 2 # Gamma(1/2) = Sqrt(Pi)
[1] 3.141593
> x = 1 # Assigns the value 1 to x
> y = 2 # Assigns the value 2 to y
> x+y
[1] 3
> z = x+y
> z
[1] 3
> x = c(1,2,3,4,5,6) # Collect these numbers; x is now a vector
> z # No dynamic updating; it's not a spreadsheet
[1] 3
> x+y
[1] 3 4 5 6 7 8
>y=1 + 2*x
> cbind(x,y)
[1, }\begin{array}{cc}{\textrm{x}}&{Y}\\{[1,]}&{1}
[3,] 3 7
[4,] 4 9
[5,] 5 11
[6,] 6 13
> z = y[x>4] # z gets y such that x > 4
> z
[1] 11 13
> z2 = subset(y,x>4); z2
[1] 11 13
> # If you put an array of integers inside the brackets, you get those
> # elements, in the order indicated.
> y[c(6,5,4,3,2,1)] # y in opposite order
[1] 13 11 9 7 5 3
> y[c(2,2,2,3,4)] # Repeats are okay
[1] 5 5 5 7 9
> y[7] # There is no seventh element. NA is the missing value code
[1] NA
```

```
> # Computing probabilities, etc.
>
> pnorm(0) # Area less than zero for a standard normal
[1] 0.5
>
> pnorm(160,mean=100,sd=15) # IQ of 160
[1] 0.9999683
>
> pcauchy(4)
[1] 0.9220209
>
> dnorm(0) # height of the curve
[1] 0.3989423
>
> dpois(0,lambda=3) # P(Y=0) for Y ~ Poisson(3)
[1] 0.04978707
>
> qnorm(0.975) # z value with P(Z<z) = 0.975
[1] 1.959964
>
> qf(0.975,df1=6,df2=122) # Critical value for F, not in any table
[1] 2.513606
>
> CriticalValue = qchisq(0.95,df=1:8)
> df=1:8; cbind(df,CriticalValue)
df CriticalValue
[1,] 1 3.841459
[2,] 2 5.991465
[3,] 3 7.814728
[4,] 4 9.487729
[5,] 5 11.070498
[6,] 6 12.591587
[7,] 7 14.067140
[8,] 8 15.507313
```

```
> # data() lists available data sets
> trees
    Girth Height Volume
        8.3 70 10.3
        8.6 65 10.3
        8.8 63 10.2
        10.5 72 16.4
        10.7 81 18.8
        10.8 83 19.7
        11.0 66 15.6
11.0 75 18.2
9 11.1 80 22.6
10
11
12 11.4 76 21.0
```



```
14}11.7\quad69 21.
15}12.0 75 19.1
16
17
18}13.3\quad86 27.
19
20
21 14.0 78 34.5
22
23 14.5 74 36.3
24 16.0 72 38.3
25 16.3 77 42.6
26 17.3 81 55.4
27 17.5 82 55.7
28 17.9 80 58.3
29}18.0\quad80 51.
```



```
31 20.6 87 77.0
> mean(trees$Height); var(trees$Height)
[1] 76
[1] 40.6
> mean(Height)
Error in mean(Height) : object 'Height' not found
> attach(trees)
> mean(Height)
[1] 76
```

```
> summary(trees)
Girth Height Volume
    Min. : 8.30 Min. :63 Min. :10.20
    1st Qu.:11.05 1st Qu.:72 1st Qu.:19.40
    Median :12.90 Median :76 Median :24.20
    Mean :13.25 Mean :76 Mean :30.17
    3rd Qu.:15.25 3rd Qu.:80 3rd Qu.:37.30
    Max. :20.60 Max. :87 Max. :77.00
> cor(trees)
        Girth Height Volume
Girth 1.0000000 0.5192801 0.9671194
Height 0.5192801 1.0000000 0.5982497
Volume 0.9671194 0.5982497 1.0000000
> plot(trees$Girth,trees$Volume)
```


> pairs(trees) \# Can also give it a matrix, in which the columns are variables

Going further on your own

Look at the free mini-book An introduction to R by Venables et al. A copy is available at http://www.utstat.toronto.edu/~brunner/help/R-intro.pdf. Or, try
> library(help="stats")

AIC
ARMAacf
ARMAtoMA
Beta
Binomial
Box.test
C
Cauchy
Chisquare
Exponential
FDist
GammaDist
Geometric
HoltWinters

Akaike's An Information Criterion
Compute Theoretical ACF for an ARMA Process
Convert ARMA Process to Infinite MA Process
The Beta Distribution
The Binomial Distribution
Box-Pierce and Ljung-Box Tests
Sets Contrasts for a Factor
The Cauchy Distribution
The (non-central) Chi-Squared Distribution
The Exponential Distribution
The F Distribution
The Gamma Distribution
The Geometric Distribution
Holt-Winters Filtering
. . . list continues!
To see details on one of these packages, type something like

```
> help(t.test)
```

Generally, R's help assumes knowledge of the topic, but they often give references. For a quicker introduction to many statistical topics, try the Wikipedia:
http://en.wikipedia.org
Or you could ask me, but I might have to look in the Wikipedia.

This document was prepared by Jerry Brunner, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License:
http://creativecommons.org/licenses/by-sa/3.0/deed.en_US. Use any part of it as you like and share the result freely.

