# More Linear Algebra<sup>1</sup> STA 302: Fall 2015

<sup>&</sup>lt;sup>1</sup>See Chapter 2 of *Linear models in statistics* for more detail. This slide show is an open-source document. See last slide for copyright information.

# Overview

- 1 Things you already know
- 2 Spectral decomposition
- **3** Positive definite matrices
- 4 Square root matrices



# You already know about

- Matrices  $\mathbf{A} = [a_{ij}]$
- Matrix addition and subtraction  $\mathbf{A} + \mathbf{B} = [a_{ij} + b_{ij}]$
- Scalar multiplication  $a\mathbf{B} = [a b_{ij}]$
- Matrix multiplication  $\mathbf{AB} = \left[\sum_{k} a_{ik} b_{kj}\right]$
- Inverse  $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}$
- Transpose  $\mathbf{A}' = [a_{ji}]$
- Symmetric matrices  $\mathbf{A} = \mathbf{A}'$
- Determinants
- Linear independence

# Three mistakes that will get you a zero Numbers are $1 \times 1$ matrices, but larger matrices are not just numbers.

You will get a zero if you

- Write AB = BA. It's not true in general.
- Write  $\mathbf{A}^{-1}$  when  $\mathbf{A}$  is not a square matrix. The inverse is not even defined.
- Represent the inverse of a matrix (even if it exists) by writing it in the denominator, like  $\mathbf{a}'\mathbf{B}^{-1}\mathbf{a} = \frac{\mathbf{a}'\mathbf{a}}{\mathbf{B}}$ . Matrices are not just numbers.

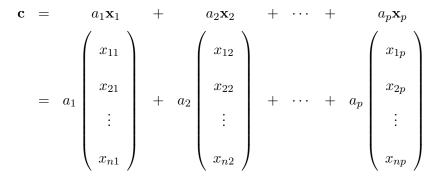
If you commit one of these crimes, the mark for the question (or part of a question, like 3c) is zero. The rest of your answer will be ignored.

# Half marks off, at least

You will lose *at least* half marks for writing a product like AB when the number of colmns in A does not equal the number of rows in B.

## Linear combination of vectors

Let  $\mathbf{x}_1, \ldots, \mathbf{x}_p$  be  $n \times 1$  vectors and  $a_1, \ldots, a_p$  be scalars. A *linear combination* is



# Linear independence

A set of vectors  $\mathbf{x}_1, \ldots, \mathbf{x}_p$  is said to be *linearly dependent* if there is a set of scalars  $a_1, \ldots, a_p$ , not all zero, with

$$a_1 \begin{pmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{n1} \end{pmatrix} + a_2 \begin{pmatrix} x_{12} \\ x_{22} \\ \vdots \\ x_{n2} \end{pmatrix} + \dots + a_p \begin{pmatrix} x_{1p} \\ x_{2p} \\ \vdots \\ x_{np} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

If no such constants  $a_1, \ldots, a_p$  exist, the vectors are linearly independent. That is,

If  $a_1\mathbf{x}_1 + a_2\mathbf{x}_2 + \cdots + a_p\mathbf{x}_p = \mathbf{0}$  implies  $a_1 = a_2 \cdots = a_p = 0$ , then the vectors are said to be *linearly independent*.

# Bind the vectors $\mathbf{x}_1, \ldots, \mathbf{x}_p$ into a matrix

$$a_{1}\mathbf{x}_{1} + a_{2}\mathbf{x}_{2} + \cdots + a_{p}\mathbf{x}_{p}$$

$$= \begin{pmatrix} x_{11} \\ x_{21} \\ \vdots \\ x_{n1} \end{pmatrix} a_{1} + \begin{pmatrix} x_{12} \\ x_{22} \\ \vdots \\ x_{n2} \end{pmatrix} a_{2} + \cdots + \begin{pmatrix} x_{1p} \\ x_{2p} \\ \vdots \\ x_{np} \end{pmatrix} a_{p}$$

$$= \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \cdots & n_{np} \end{pmatrix} \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{p} \end{pmatrix}$$

= Xa

A more convenient definition of linear independence  $a_1\mathbf{x}_1 + a_2\mathbf{x}_2 + \dots + a_p\mathbf{x}_p = \mathbf{X}\mathbf{a}$ 

Let **X** be an  $n \times p$  matrix of constants. The columns of **X** are said to be *linearly dependent* if there exists  $\mathbf{a} \neq \mathbf{0}$  with  $\mathbf{X}\mathbf{a} = \mathbf{0}$ . We will say that the columns of **X** are linearly *independent* if  $\mathbf{X}\mathbf{a} = \mathbf{0}$  implies  $\mathbf{a} = \mathbf{0}$ .

For example, show that  $\mathbf{B}^{-1}$  exists implies that the columns of  $\mathbf{B}$  are linearly independent.

$$\mathbf{B}\mathbf{a} = \mathbf{0} \Rightarrow \mathbf{B}^{-1}\mathbf{B}\mathbf{a} = \mathbf{B}^{-1}\mathbf{0} \Rightarrow \mathbf{a} = \mathbf{0}.$$

# How to show $\mathbf{A}^{-1\prime} = \mathbf{A}^{\prime-1}$

Suppose  $\mathbf{B} = \mathbf{A}^{-1}$ , meaning  $\mathbf{AB} = \mathbf{BA} = \mathbf{I}$ . Must show two things:  $\mathbf{B'A'} = \mathbf{I}$  and  $\mathbf{A'B'} = \mathbf{I}$ .

$$\mathbf{AB} = \mathbf{I} \quad \Rightarrow \quad \mathbf{B'A'} = \mathbf{I'} = \mathbf{I} \\ \mathbf{BA} = \mathbf{I} \quad \Rightarrow \quad \mathbf{A'B'} = \mathbf{I'} = \mathbf{I}$$

Extras You may not know about these, and we may use them occasionally

- Trace
- Rank
- Partitioned matrices

# Trace of a square matrix

- Sum of diagonal elements
- Obvious:  $tr(\mathbf{A} + \mathbf{B}) = tr(\mathbf{A}) + tr(\mathbf{B})$
- Not obvious:  $tr(\mathbf{AB}) = tr(\mathbf{BA})$

# Rank

- Row rank is the number of linearly independent rows.
- Column rank is the number of linearly independent columns.
- Rank of a matrix is the minimum of row rank and column rank.
- $rank(\mathbf{AB}) = \min(rank(\mathbf{A}), rank(\mathbf{B})).$

# Partitioned matrix

#### • A matrix of matrices

# $\left[ \begin{array}{c|c} \mathbf{A} & \mathbf{B} \\ \hline \mathbf{C} & \mathbf{D} \end{array} \right]$

• Row by column (matrix) multiplication works, provided the matrices are the right sizes.

# Eigenvalues and eigenvectors

Let  $\mathbf{A} = [a_{i,j}]$  be an  $n \times n$  matrix, so that the following applies to square matrices.  $\mathbf{A}$  is said to have an *eigenvalue*  $\lambda$  and (non-zero) *eigenvector*  $\mathbf{x}$  corresponding to  $\lambda$  if

$$\mathbf{A}\mathbf{x} = \lambda \mathbf{x}.$$

- Eigenvalues are the  $\lambda$  values that solve the determinantal equation  $|\mathbf{A} \lambda \mathbf{I}| = 0$ .
- The determinant is the product of the eigenvalues:  $|\mathbf{A}| = \prod_{i=1}^{n} \lambda_i$

## Spectral decomposition of symmetric matrices

The Spectral decomposition theorem says that every square and symmetric matrix  $\mathbf{A} = [a_{i,j}]$  may be written

$$\mathbf{A} = \mathbf{C}\mathbf{D}\mathbf{C}',$$

where the columns of **C** (which may also be denoted  $\mathbf{x}_1, \ldots, \mathbf{x}_n$ ) are the eigenvectors of **A**, and the diagonal matrix **D** contains the corresponding eigenvalues.

$$\mathbf{D} = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0\\ 0 & \lambda_2 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

The eigenvectors may be chosen to be orthonormal, so that  $\mathbf{C}$  is an orthogonal matrix. That is,  $\mathbf{CC}' = \mathbf{C}'\mathbf{C} = \mathbf{I}$ .

# Positive definite matrices

#### The $n \times n$ matrix **A** is said to be *positive definite* if

# $\mathbf{y}'\mathbf{A}\mathbf{y} > 0$

for all  $n \times 1$  vectors  $\mathbf{y} \neq \mathbf{0}$ . It is called *non-negative definite* (or sometimes positive semi-definite) if  $\mathbf{y}' \mathbf{A} \mathbf{y} \ge 0$ .

# Example: Show $\mathbf{X}'\mathbf{X}$ non-negative definite

Let **X** be an  $n \times p$  matrix of real constants and let **y** be  $p \times 1$ . Then **Z** = **Xy** is  $n \times 1$ , and

$$\mathbf{y}' (\mathbf{X}'\mathbf{X}) \mathbf{y}$$

$$= (\mathbf{X}\mathbf{y})' (\mathbf{X}\mathbf{y})$$

$$= \mathbf{Z}'\mathbf{Z}$$

$$= \sum_{i=1}^{n} Z_i^2 \ge 0 \quad \blacksquare$$

Some properties of symmetric positive definite matrices Variance-covariance matrices are often assumed positive definite.

For a symmetric matrix,

```
Positive definite

\downarrow

All eigenvalues positive

\downarrow

Inverse exists \Leftrightarrow Columns (rows) linearly independent.
```

If a real symmetric matrix is also non-negative definite, as a variance-covariance matrix *must* be, Inverse exists  $\Rightarrow$  Positive definite

# Showing Positive definite $\Rightarrow$ Eigenvalues positive

Let the  $p \times p$  matrix **A** be positive definite, so that  $\mathbf{y}' \mathbf{A} \mathbf{y} > 0$  for all  $\mathbf{y} \neq \mathbf{0}$ .

 $\lambda \text{ an eigenvalue means } \mathbf{A}\mathbf{x} = \lambda \mathbf{x}.$   $\Rightarrow \mathbf{x}' \mathbf{A}\mathbf{x} = \mathbf{x}' \lambda \mathbf{x} > 0, \text{ since the eigenvector } \mathbf{x} \neq \mathbf{0}.$   $\Rightarrow \lambda \mathbf{x}' \mathbf{x} > 0.$   $\Rightarrow \frac{\lambda \mathbf{x}' \mathbf{x}}{\mathbf{x}' \mathbf{x}} > \frac{0}{\mathbf{x}' \mathbf{x}} = 0.$  $\Rightarrow \lambda > 0 \quad \blacksquare$ 

# Inverse of a diagonal matrix To set things up

Suppose  $\mathbf{D} = [d_{i,j}]$  is a diagonal matrix with non-zero diagonal elements. It is easy to verify that

$$\begin{pmatrix} d_{1,1} & 0 & \cdots & 0 \\ 0 & d_{2,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{n,n} \end{pmatrix} \begin{pmatrix} 1/d_{1,1} & 0 & \cdots & 0 \\ 0 & 1/d_{2,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1/d_{n,n} \end{pmatrix} = \mathbf{I}$$

And

$$\begin{pmatrix} 1/d_{1,1} & 0 & \cdots & 0 \\ 0 & 1/d_{2,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1/d_{n,n} \end{pmatrix} \begin{pmatrix} d_{1,1} & 0 & \cdots & 0 \\ 0 & d_{2,2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_{n,n} \end{pmatrix} = \mathbf{I}$$

Showing Eigenvalues positive  $\Rightarrow$  Inverse exists For a symmetric, positive definite matrix

Let  $\mathbf{A}$  be symmetric and positive definite. Then  $\mathbf{A} = \mathbf{CDC'}$ , and its eigenvalues are positive.

Let  $\mathbf{B} = \mathbf{C}\mathbf{D}^{-1}\mathbf{C}'$ . Show  $\mathbf{B} = \mathbf{A}^{-1}$ .

$$\mathbf{AB} = \mathbf{CDC'}\mathbf{CD}^{-1}\mathbf{C'} = \mathbf{I}$$
  
 
$$\mathbf{BA} = \mathbf{CD}^{-1}\mathbf{C'}\mathbf{CDC'} = \mathbf{I}$$

 $\operatorname{So}$ 

$$\mathbf{A}^{-1} = \mathbf{C}\mathbf{D}^{-1}\mathbf{C}'$$

#### Square root matrices For symmetric, non-negative definite matrices

To set things up, define

$$\mathbf{D}^{1/2} = \begin{pmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_n} \end{pmatrix}$$

So that

$$\mathbf{D}^{1/2}\mathbf{D}^{1/2} = \begin{pmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_n} \end{pmatrix} \begin{pmatrix} \sqrt{\lambda_1} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_n} \end{pmatrix}$$
$$= \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix} = \mathbf{D}$$

# For a non-negative definite, symmetric matrix A

#### Define

$$\mathbf{A}^{1/2} = \mathbf{C}\mathbf{D}^{1/2}\mathbf{C}'$$

So that

$${\bf A}^{1/2} {\bf A}^{1/2} \ = \ {\bf C} {\bf D}^{1/2} {\bf C}' {\bf C} {\bf D}^{1/2} {\bf C}'$$

$$= \mathbf{C}\mathbf{D}^{1/2}\mathbf{I}\mathbf{D}^{1/2}\mathbf{C}'$$

$$= \mathbf{C}\mathbf{D}^{1/2}\mathbf{D}^{1/2}\mathbf{C}'$$

- = CDC'
- = A

# The square root of the inverse is the inverse of the square root

Let **A** be symmetric and positive definite, with  $\mathbf{A} = \mathbf{CDC'}$ . Let  $\mathbf{B} = \mathbf{CD}^{-1/2}\mathbf{C'}$ . What is  $\mathbf{D}^{-1/2}$ ? Show  $\mathbf{B} = (\mathbf{A}^{-1})^{1/2}$ .  $\mathbf{BB} = \mathbf{CD}^{-1/2}\mathbf{C'}\mathbf{CD}^{-1/2}\mathbf{C'}$ 

$$= \mathbf{C}\mathbf{D}^{-1}\mathbf{C}' = \mathbf{A}^{-1}$$

Show 
$$\mathbf{B} = (\mathbf{A}^{1/2})^{-1}$$
  
 $\mathbf{A}^{1/2}\mathbf{B} = \mathbf{C}\mathbf{D}^{1/2}\mathbf{C}'\mathbf{C}\mathbf{D}^{-1/2}\mathbf{C}' = \mathbf{I}$   
 $\mathbf{B}\mathbf{A}^{1/2} = \mathbf{C}\mathbf{D}^{-1/2}\mathbf{C}'\mathbf{C}\mathbf{D}^{1/2}\mathbf{C}' = \mathbf{I}$   
Just write  $\mathbf{A}^{-1/2} = \mathbf{C}\mathbf{D}^{-1/2}\mathbf{C}'$ 

## Matrix calculation with R

> is.matrix(3) # Is the number 3 a 1x1 matrix?

[1] FALSE

#### > treecorr = cor(trees); treecorr

Girth Height Volume Girth 1.000000 0.5192801 0.9671194 Height 0.5192801 1.000000 0.5982497 Volume 0.9671194 0.5982497 1.000000

> is.matrix(treecorr)

[1] TRUE

#### Creating matrices Bind rows into a matrix

```
> # Bind rows of a matrix together
> A = rbind(c(3, 2, 6, 8)),
            c(2,10,-7,4),
+
+
            c(6, 6, 9,1) ); A
    [,1] [,2] [,3] [,4]
[1,]
    3 2 6
                    8
[2,] 2 10 -7 4
                    1
[3,]
      6
           6 9
> # Transpose
> t(A)
    [,1] [,2] [,3]
[1,]
      3 2
               6
      2 10
[2,]
               6
[3,] 6 -7
               9
               1
[4,]
       8
           4
```

# Matrix multiplication Remember, $\mathbf{A}$ is $3 \times 4$

```
> # U = AA' (3x3), V = A'A (4x4)
> U = A % * % t(A)
> V = t(A) %*% A; V
     [,1] [,2] [,3] [,4]
[1,]
       49
            62
                 58
                      38
[2,]
                      62
       62
           140
               -4
[3,]
       58
           -4
                166
                      29
[4,]
       38
            62
                 29
                      81
```

# Determinants

[1] 1490273
[1] -3.622862e-09

Inverse of  $\mathbf{U}$  exists, but inverse of  $\mathbf{V}$  does not.

### Inverses

- The solve function is for solving systems of linear equations like Mx = b.
- Just typing solve(M) gives  $M^{-1}$ .

```
> # Recall U = AA' (3x3), V = A'A (4x4)
> solve(U)
```

|      | [,1]          | [,2]          | [,3]          |
|------|---------------|---------------|---------------|
| [1,] | 0.0173505123  | -8.508508e-04 | -1.029342e-02 |
| [2,] | -0.0008508508 | 5.997559e-03  | 2.013054e-06  |
| [3,] | -0.0102934160 | 2.013054e-06  | 1.264265e-02  |

#### > solve(V)

```
Error in solve.default(V) :
    system is computationally singular: reciprocal condition
    number = 6.64193e-18
```

## Eigenvalues and eigenvectors

```
> # Recall U = AA' (3x3), V = A'A (4x4)
```

```
> eigen(U)
```

\$values
[1] 234.01162 162.89294 39.09544

#### \$vectors

|      | [,1]       | [,2]       | [,3]        |
|------|------------|------------|-------------|
| [1,] | -0.6025375 | 0.1592598  | 0.78203893  |
| [2,] | -0.2964610 | -0.9544379 | -0.03404605 |
| [3,] | -0.7409854 | 0.2523581  | -0.62229894 |

V should have at least one zero eigenvalue Because A is  $3 \times 4$ ,  $\mathbf{V} = \mathbf{A}'\mathbf{A}$ , and the rank of a product is the minimum rank of the matrices.

#### > eigen(V)

\$values

[1] 2.340116e+02 1.628929e+02 3.909544e+01 -1.012719e-14

#### \$vectors

|      | [,1]       | [,2]         | [,3]       | [,4]         |
|------|------------|--------------|------------|--------------|
| [1,] | -0.4475551 | 0.006507269  | -0.2328249 | 0.863391352  |
| [2,] | -0.5632053 | -0.604226296 | -0.4014589 | -0.395652773 |
| [3,] | -0.5366171 | 0.776297432  | -0.1071763 | -0.312917928 |
| [4,] | -0.4410627 | -0.179528649 | 0.8792818  | 0.009829883  |

# Spectral decomposition $\mathbf{V} = \mathbf{C}\mathbf{D}\mathbf{C}'$

```
> eigenV = eigen(V)
> C = eigenV$vectors; D = diag(eigenV$values); D
```

|      | [,1]     | [,2]     | [,3]     | [,4]          |
|------|----------|----------|----------|---------------|
| [1,] | 234.0116 | 0.0000   | 0.00000  | 0.000000e+00  |
| [2,] | 0.0000   | 162.8929 | 0.00000  | 0.000000e+00  |
| [3,] | 0.0000   | 0.0000   | 39.09544 | 0.000000e+00  |
| [4,] | 0.0000   | 0.0000   | 0.00000  | -1.012719e-14 |

```
> # C is an orthoganal matrix
> C %*% t(C)
```

[,1] [,2] [,3] [,4] [1,] 1.00000e+00 5.551115e-17 0.000000e+00 -3.989864e-17 [2,] 5.551115e-17 1.000000e+00 2.636780e-16 3.556183e-17 [3,] 0.00000e+00 2.636780e-16 1.000000e+00 2.558717e-16 [4,] -3.989864e-17 3.556183e-17 2.558717e-16 1.000000e+00

# Verify $\mathbf{V} = \mathbf{CDC}'$

#### > V; C %\*% D %\*% t(C)

| [1,]<br>[2,]<br>[3,] | [,1]<br>49<br>62<br>58 | [,2]<br>62<br>140<br>-4 | [,3]<br>58<br>-4<br>166 | [,4]<br>38<br>62<br>29 |
|----------------------|------------------------|-------------------------|-------------------------|------------------------|
| [4,]                 | 38                     | 62                      | 29                      | 81                     |
|                      |                        |                         |                         |                        |
|                      | [,1]                   | [,2]                    | [,3]                    | [,4]                   |
| [1,]                 | 49                     | 62                      | 58                      | 38                     |
| [2,]                 | 62                     | 140                     | -4                      | 62                     |
| [3,]                 | 58                     | -4                      | 166                     | 29                     |
| [4,]                 | 38                     | 62                      | 29                      | 81                     |

# Square root matrix $\mathbf{V}^{1/2} = \mathbf{C}\mathbf{D}^{1/2}\mathbf{C}'$

```
> sqrtV = C %*% sqrt(D) %*% t(C)
```

```
Warning message:
In sqrt(D) : NaNs produced
```

```
> # Multiply to get V
> sqrtV %*% sqrtV; V
```

|      | [,1] | [,2] | [,3] | [,4] |
|------|------|------|------|------|
| [1,] | NaN  | NaN  | NaN  | NaN  |
| [2,] | NaN  | NaN  | NaN  | NaN  |
| [3,] | NaN  | NaN  | NaN  | NaN  |
| [4,] | NaN  | NaN  | NaN  | NaN  |
|      | [,1] | [,2] | [,3] | [,4] |
| [1,] | 49   | 62   | 58   | 38   |
| [2,] | 62   | 140  | -4   | 62   |
| [3,] | 58   | -4   | 166  | 29   |
|      |      |      |      |      |

# What happened?

#### > D; sqrt(D)

|      | [,1]     | [,2]     | [,3]     | [,4]          |
|------|----------|----------|----------|---------------|
| [1,] | 234.0116 | 0.0000   | 0.00000  | 0.000000e+00  |
| [2,] | 0.0000   | 162.8929 | 0.00000  | 0.000000e+00  |
| [3,] | 0.0000   | 0.0000   | 39.09544 | 0.000000e+00  |
| [4,] | 0.0000   | 0.0000   | 0.00000  | -1.012719e-14 |
|      |          |          |          | F 43          |

|      | [,1]     | [,2]     | [,3]     | [,4] |
|------|----------|----------|----------|------|
| [1,] | 15.29744 | 0.00000  | 0.000000 | 0    |
| [2,] | 0.00000  | 12.76295 | 0.000000 | 0    |
| [3,] | 0.00000  | 0.00000  | 6.252635 | 0    |
| [4,] | 0.00000  | 0.00000  | 0.000000 | NaN  |

Warning message: In sqrt(D) : NaNs produced

# Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/302f15