STA 302f15 Assignment Seven

These problems are preparation for the quiz, and are not to be handed in. As usual, **you might be asked to prove things that are not true**. In this case you should say why the statement is not always true.

- 1. Let the continuous random vectors $\mathbf{y_1}$ and $\mathbf{y_2}$ be independent. Show that their joint moment-generating function is the product of their moment-generating functions. Since $\mathbf{y_1}$ and $\mathbf{y_2}$ are continuous, you will integrate. It is okay to represent a multiple integral with a single integral sign.
- 2. Show that if $\mathbf{y} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, with $\boldsymbol{\Sigma}$ positive definite, then $W = (\mathbf{y} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{y} \boldsymbol{\mu})$ has a chi-square distribution with p degrees of freedom.
- 3. Let Y_1, \ldots, Y_n be a random sample from a $N(\mu, \sigma^2)$ distribution.
 - (a) Show $Cov(\overline{Y}, (Y_j \overline{Y})) = 0$ for j = 1, ..., n.
 - (b) Show that \overline{Y} and S^2 are independent.
 - (c) Show that

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1),$$

where $S^2 = \frac{\sum_{i=1}^n (Y_i - \overline{Y})^2}{n-1}$. Hint: $\sum_{i=1}^n (Y_i - \mu)^2 = \sum_{i=1}^n (Y_i - \overline{Y} + \overline{Y} - \mu)^2 = \dots$

4. Recall the definition of the t distribution. If $Z \sim N(0, 1)$, $W \sim \chi^2(\nu)$ and Z and W are independent, then $T = \frac{Z}{\sqrt{W/\nu}}$ is said to have a t distribution with ν degrees of freedom, and we write $T \sim t(\nu)$. As Question 3, let Y_1, \ldots, Y_n be random sample from a $N(\mu, \sigma^2)$ distribution. Show that $T = \frac{\sqrt{n}(\overline{Y}-\mu)}{S} \sim$

Question 5, let T_1, \ldots, T_n be random sample from a $N(\mu, \sigma)$ distribution. Show that $T = \frac{1}{S} \sim t(n-1)$.

- 5. In the multiple linear regression model, let the columns of the **X** matrix be linearly independent. Either (a) show that $(\mathbf{X}'\mathbf{X})^{-1/2}$ is symmetric, or (b) show by a simple numerical example that $(\mathbf{X}'\mathbf{X})^{-1/2}$ may not be symmetric.
- 6. In the general linear regression model with normal error terms, what is the distribution of \mathbf{y} ?
- 7. You know that the least squares estimate of β is $\hat{\beta} = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{y}$. What is the distribution of $\hat{\beta}$ assuming normal error terms? Show the calculations.
- 8. Let $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$. What is the distribution of $\hat{\mathbf{y}}$ assuming normal error terms? Show the expected value and covariance matrix calculations.
- 9. Let the vector of residuals $\hat{\boldsymbol{\epsilon}} = \mathbf{y} \hat{\mathbf{y}}$. What is the distribution of $\hat{\boldsymbol{\epsilon}}$ assuming normal error terms? Show the calculations. Simplify both the expected value (which is zero) and the covariance matrix.
- 10. For the general linear regression model with normal error terms, show that the $n \times (k+1)$ matrix of covariances $C(\hat{\epsilon}, \hat{\beta}) = 0$. Why does this show that $SSE = \hat{\epsilon}'\hat{\epsilon}$ and $\hat{\beta}$ are independent?
- 11. Calculate $C(\hat{\epsilon}, \hat{\mathbf{y}})$; show your work. Why should you have known this answer without doing the calculation, assuming normal error terms? Why does the assumption of normality matter?
- 12. For the general linear regression model with normal error terms, show that $\hat{\boldsymbol{\epsilon}}$ and $\overline{\boldsymbol{y}}$ are independent.

This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The IATEX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/302f15