% 302f15Assignment3.tex \documentclass[11pt]{article} %\usepackage{amsbsy} % for \boldsymbol and \pmb \usepackage{graphicx} % To include pdf files! \usepackage{amsmath} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage[colorlinks=true, pdfstartview=FitV, linkcolor=blue, citecolor=blue, urlcolor=blue]{hyperref} % For links \usepackage{fullpage} %\pagestyle{empty} % No page numbers \begin{document} %\enlargethispage*{1000 pt} \begin{center} {\Large \textbf{STA 302f15 Assignment Three}}\footnote{Copyright information is at the end of the last page.} \vspace{1 mm} \end{center} \noindent For this assignment, Chapter 2 in the text contains material on matrix algebra. You are responsible for what is in this assignment, not everything that's in the text. Questions~\ref{r1} and~\ref{r2} are to be done with R. Please print the two sets of R output on separate pieces of paper. You may be asked to hand one of them in, but not the other. Except for the R parts, these problems are preparation for the quiz in tutorial on Friday October 1st, and are not to be handed in. \emph{Remember that the R parts are \textbf{not group projects}. Do the work yourself. Don't help anybody until you are finished. Don't help anybody who has not started yet. \underline{Never} look at anyone else's code or let anyone look at yours.} \begin{enumerate} \item In the textbook, do Problems 2.27, 2.28, 2.35, 2.36, 2.37, 2,38 (Prove the ``if" part too), 2.53, 2.76. \item \label{r1} In the textbook, do 2.14 a, e, g, and m using R. Show both input (creation of the matrices) and output. Label the output (give letters) using comments. Bring the printout to the quiz. \item \label{r2} Make up a your own $4 \times 4$ symmetric matrix that is not singular (that is, the inverse exists), and is \emph{not a diagonal matrix}. If your first try is singular, try again. Call it $\mathbf{A}$. Enter it into R using \texttt{rbind} (see lecture slides). Make sure to display the input. Then, \begin{enumerate} \item Calculate $|\mathbf{A}^{-1}|$ and $1/|\mathbf{A}|$, verifying that they are equal. \item Calculate $|\mathbf{A}^2|$ and $|\mathbf{A}|^2$, verifying that they are equal. \item Calculate the eigenvalues and eigenvectors of $\mathbf{A}$. \item Calculate $\mathbf{A}^{1/2}$. \item Calculate $\mathbf{A}^{-1/2}$. \end{enumerate} Display both input and output for each part. Label the output with comments. Bring the printout to the quiz. \item Recall the definition of linear independence. The columns of $\mathbf{X}$ are said to be \emph{linearly dependent} if there exists a $p \times 1$ vector $\mathbf{v} \neq \mathbf{0}$ with $\mathbf{Xv} = \mathbf{0}$. We will say that the columns of $\mathbf{X}$ are linearly \emph{independent} if $\mathbf{Xv} = \mathbf{0}$ implies $\mathbf{v} = \mathbf{0}$. Let $\mathbf{A}$ be a square matrix. Show that if the columns of $\mathbf{A}$ are linearly dependent, $\mathbf{A}^{-1}$ cannot exist. Hint: $\mathbf{v}$ cannot be both zero and not zero at the same time. \item \label{ss} Let $\mathbf{a}$ be an $n \times 1$ matrix of real constants. How do you know $\mathbf{a}^\prime\mathbf{a}\geq 0$? \item Recall the \emph{spectral decomposition} of a square symmetric matrix (For example, a variance-covariance matrix). Any such matrix $\boldsymbol{\Sigma}$ can be written as $\boldsymbol{\Sigma} = \mathbf{CD} \mathbf{C}^\prime$, where $\mathbf{C}$ is a matrix whose columns are the (orthonormal) eigenvectors of $\boldsymbol{\Sigma}$, $\mathbf{D}$ is a diagonal matrix of the corresponding eigenvalues, and $\mathbf{C}^\prime\mathbf{C} =~\mathbf{C}\mathbf{C}^\prime =~\mathbf{I}$. \begin{enumerate} \item Let $\boldsymbol{\Sigma}$ be a square symmetric matrix with eigenvalues that are all strictly positive. \begin{enumerate} \item What is $\mathbf{D}^{-1}$? \item Show $\boldsymbol{\Sigma}^{-1} = \mathbf{C} \mathbf{D}^{-1} \mathbf{C}^\prime$ \end{enumerate} \pagebreak \item Let $\boldsymbol{\Sigma}$ be a square symmetric matrix, and this time some of the eigenvalues might be zero. \begin{enumerate} \item What do you think $\mathbf{D}^{1/2}$ might be? \item Define $\boldsymbol{\Sigma}^{1/2}$ as $\mathbf{CD}^{1/2} \mathbf{C}^\prime$. Show $\boldsymbol{\Sigma}^{1/2}$ is symmetric. \item Show $\boldsymbol{\Sigma}^{1/2}\boldsymbol{\Sigma}^{1/2} = \boldsymbol{\Sigma}$. \end{enumerate} \item Now return to the situation where the eigenvalues of the square symmetric matrix $\boldsymbol{\Sigma}$ are all strictly positive. Define $\boldsymbol{\Sigma}^{-1/2}$ as $\mathbf{CD}^{-1/2} \mathbf{C}^\prime$, where the elements of the diagonal matrix $\mathbf{D}^{-1/2}$ are the reciprocals of the corresponding elements of $\mathbf{D}^{1/2}$. \begin{enumerate} \item Show that the inverse of $\boldsymbol{\Sigma}^{1/2}$ is $\boldsymbol{\Sigma}^{-1/2}$, justifying the notation. \item Show $\boldsymbol{\Sigma}^{-1/2} \boldsymbol{\Sigma}^{-1/2} = \boldsymbol{\Sigma}^{-1}$. \end{enumerate} \item The (square) matrix $\boldsymbol{\Sigma}$ is said to be \emph{positive definite} if $\mathbf{v}^\prime \boldsymbol{\Sigma} \mathbf{v} > 0$ for all vectors $\mathbf{v} \neq \mathbf{0}$. Show that the eigenvalues of a positive definite matrix are all strictly positive. \item Let $\boldsymbol{\Sigma}$ be a symmetric, positive definite matrix. Putting together a couple of results you have proved above, establish that $\boldsymbol{\Sigma}^{-1}$ exists. \end{enumerate} \item Using the Spectral Decomposition Theorem and $tr(\mathbf{AB})=tr(\mathbf{BA})$, prove that the trace is the sum of the eigenvalues for a symmetric matrix. \item Using the Spectral Decomposition Theorem and $|\mathbf{AB}| = |\mathbf{BA}|$, prove that the determinant of a symmetric matrix is the product of its eigenvalues. \end{enumerate} \vspace{90mm} \noindent \begin{center}\begin{tabular}{l} \hspace{6in} \\ \hline \end{tabular}\end{center} This assignment was prepared by \href{http://www.utstat.toronto.edu/~brunner}{Jerry Brunner}, Department of Statistical Sciences, University of Toronto. It is licensed under a \href{http://creativecommons.org/licenses/by-sa/3.0/deed.en_US} {Creative Commons Attribution - ShareAlike 3.0 Unported License}. Use any part of it as you like and share the result freely. The \LaTeX~source code is available from the course website: \href{http://www.utstat.toronto.edu/~brunner/oldclass/302f15} {\small\texttt{http://www.utstat.toronto.edu/$^\sim$brunner/oldclass/302f15}} \end{document}