STA 302f15 Assignment Three ${ }^{1}$

For this assignment, Chapter 2 in the text contains material on matrix algebra. You are responsible for what is in this assignment, not everything that's in the text. Questions 2 and 3 are to be done with R. Please print the two sets of R output on separate pieces of paper. You may be asked to hand one of them in, but not the other. Except for the R parts, these problems are preparation for the quiz in tutorial on Friday October 1st, and are not to be handed in.

Remember that the R parts are not group projects. Do the work yourself. Don't help anybody until you are finished. Don't help anybody who has not started yet. Never look at anyone else's code or let anyone look at yours.

1. In the textbook, do Problems 2.27, 2.28, 2.35, 2.36, 2.37, 2,38 (Prove the "if" part too), 2.53, 2.76 .
2. In the textbook, do $2.14 \mathrm{a}, \mathrm{e}, \mathrm{g}$, and m using R. Show both input (creation of the matrices) and output. Label the output (give letters) using comments. Bring the printout to the quiz.
3. Make up a your own 4×4 symmetric matrix that is not singular (that is, the inverse exists), and is not a diagonal matrix. If your first try is singular, try again. Call it A. Enter it into R using rbind (see lecture slides). Make sure to display the input. Then,
(a) Calculate $\left|\mathbf{A}^{-1}\right|$ and $1 /|\mathbf{A}|$, verifying that they are equal.
(b) Calculate $\left|\mathbf{A}^{2}\right|$ and $|\mathbf{A}|^{2}$, verifying that they are equal.
(c) Calculate the eigenvalues and eigenvectors of \mathbf{A}.
(d) Calculate $\mathbf{A}^{1 / 2}$.
(e) Calculate $\mathbf{A}^{-1 / 2}$.

Display both input and output for each part. Label the output with comments. Bring the printout to the quiz.
4. Recall the definition of linear independence. The columns of \mathbf{X} are said to be linearly dependent if there exists a $p \times 1$ vector $\mathbf{v} \neq \mathbf{0}$ with $\mathbf{X v}=\mathbf{0}$. We will say that the columns of \mathbf{X} are linearly independent if $\mathbf{X v}=\mathbf{0}$ implies $\mathbf{v}=\mathbf{0}$. Let \mathbf{A} be a square matrix. Show that if the columns of \mathbf{A} are linearly dependent, \mathbf{A}^{-1} cannot exist. Hint: \mathbf{v} cannot be both zero and not zero at the same time.

5 . Let a be an $n \times 1$ matrix of real constants. How do you know $\mathbf{a}^{\prime} \mathbf{a} \geq 0$?
6. Recall the spectral decomposition of a square symmetric matrix (For example, a variancecovariance matrix). Any such matrix $\boldsymbol{\Sigma}$ can be written as $\boldsymbol{\Sigma}=\mathbf{C D C}$, where \mathbf{C} is a matrix whose columns are the (orthonormal) eigenvectors of $\boldsymbol{\Sigma}, \mathbf{D}$ is a diagonal matrix of the corresponding eigenvalues, and $\mathbf{C}^{\prime} \mathbf{C}=\mathbf{C C}^{\prime}=\mathbf{I}$.
(a) Let $\boldsymbol{\Sigma}$ be a square symmetric matrix with eigenvalues that are all strictly positive.
i. What is \mathbf{D}^{-1} ?
ii. Show $\boldsymbol{\Sigma}^{-1}=\mathbf{C D}^{-1} \mathbf{C}^{\prime}$

[^0](b) Let $\boldsymbol{\Sigma}$ be a square symmetric matrix, and this time some of the eigenvalues might be zero.
i. What do you think $\mathbf{D}^{1 / 2}$ might be?
ii. Define $\boldsymbol{\Sigma}^{1 / 2}$ as $\mathbf{C D}{ }^{1 / 2} \mathbf{C}^{\prime}$. Show $\boldsymbol{\Sigma}^{1 / 2}$ is symmetric.
iii. Show $\boldsymbol{\Sigma}^{1 / 2} \boldsymbol{\Sigma}^{1 / 2}=\boldsymbol{\Sigma}$.
(c) Now return to the situation where the eigenvalues of the square symmetric matrix $\boldsymbol{\Sigma}$ are all strictly positive. Define $\boldsymbol{\Sigma}^{-1 / 2}$ as $\mathbf{C D}^{-1 / 2} \mathbf{C}^{\prime}$, where the elements of the diagonal matrix $\mathbf{D}^{-1 / 2}$ are the reciprocals of the corresponding elements of $\mathbf{D}^{1 / 2}$.
i. Show that the inverse of $\boldsymbol{\Sigma}^{1 / 2}$ is $\boldsymbol{\Sigma}^{-1 / 2}$, justifying the notation.
ii. Show $\boldsymbol{\Sigma}^{-1 / 2} \boldsymbol{\Sigma}^{-1 / 2}=\boldsymbol{\Sigma}^{-1}$.
(d) The (square) matrix $\boldsymbol{\Sigma}$ is said to be positive definite if $\mathbf{v}^{\prime} \boldsymbol{\Sigma} \mathbf{v}>0$ for all vectors $\mathbf{v} \neq \mathbf{0}$. Show that the eigenvalues of a positive definite matrix are all strictly positive.
(e) Let $\boldsymbol{\Sigma}$ be a symmetric, positive definite matrix. Putting together a couple of results you have proved above, establish that $\boldsymbol{\Sigma}^{-1}$ exists.
7. Using the Spectral Decomposition Theorem and $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})$, prove that the trace is the sum of the eigenvalues for a symmetric matrix.
8. Using the Spectral Decomposition Theorem and $|\mathbf{A B}|=|\mathbf{B A}|$, prove that the determinant of a symmetric matrix is the product of its eigenvalues.

This assignment was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The LATEX source code is available from the course website: http://www.utstat.toronto.edu/~brunner/oldclass/302f15

[^0]: ${ }^{1}$ Copyright information is at the end of the last page.

