STA302: Regression Analysis

See last slide for copyright information

Statistics

 Objective: To draw reasonable conclusions from noisy numerical data

 Entry point: Study relationships between variables

Data File

- Rows are cases
- Columns are variables

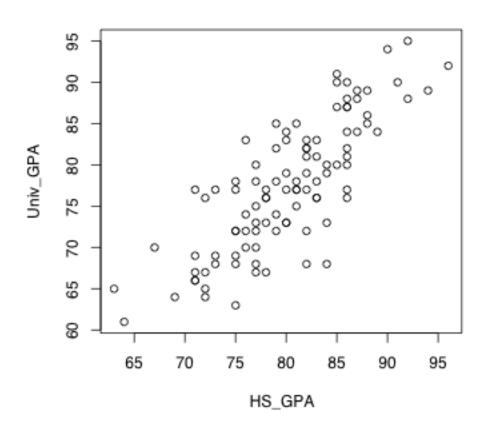
1	2	2	0	78.0	65	80	39	English	Female	3	3	1
2	2	6	2	66.0	54	75	57	English	Female	3	3	1
3	2	4	4	80.2	77	70	62	English	Male	5	6	1
4	2	5	2	81.7	80	67	76	English	Female	2	2	1
5	2	4	4	86.8	87	80	86	English	Male	5	5	1
6	2	3	1	76.7	53	75	60	English	Male	3	3	1
7	2	3	2	85.8	86	81	54	Other	Female	2	2	1
8	2	4	3	73.0	75	77	17	English	Male	4	5	1
9	2	6	2	72.3	63	60	2	English	Male	4	4	1
10	2	8	6	90.3	87	88	76	English	Male	4	4	1
11	2	8	3				60	English	Male	1	2	1
12	2	6	4		-		61	Other	Female	1	1	1
13	-	-		87.2	84	83	54	English	Male	3	3	1
14	2	2	5	91.0	90	91	84	English	Male	5	5	1
15	2	3	1	72.8	53	74	-	English	Female	3	3	1
16	-	-		80.7	72	84	14	English	Male	3	3	1
17	2	5	0	82.5	82	85	75	Other	Female	2	2	1
18	2	4	6	91.5	95	81	94	English	Female	3	3	1
19	2	3	2	78.3	77	74	60	English	Female	3	3	1
20	-	-		74.5	0	85	-	English	Male	4	4	1
21	2	3	3	80.7	71	78	53	Other	Female	1	3	1
22	2	5	3	88.3	80	85	63	English	Female	3	3	1
23	2	4	2	76.8	82	64	82	Other	Female	2	2	1
	Skipping											
								_				

570	2	5	4	84.8	88	68	80	English	Male	1	1	1
571	2	4	3	78.3	83	84	56	English	Male	4	2	1
572	2	6	3	88.3	81	90	70	English	Female	5	5	1
573	2	3	1		-			English	Male	3	3	1
574	2	5	9	77.0	73	79	60	English	Female	2	2	1
575				78.7	80	73		English	Female	6	3	1
576	2	5	2	80.7	80	70	50	Other	Male	1	1	1
577	2	4	2	80.7	56	81	50	English	Female	2	2	1
578	2	4	3		-		78	Other	Female	4	4	1
579	1	6	1	82.2	80	86	61	English	Female	2	2	1
								-				

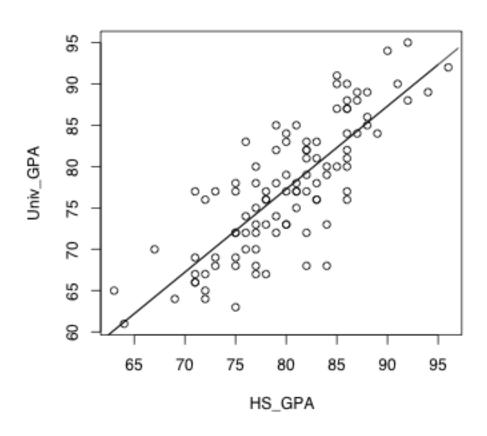
Variables can be

 Independent: Predictor or cause (contributing factor)

Dependent: Predicted or effect

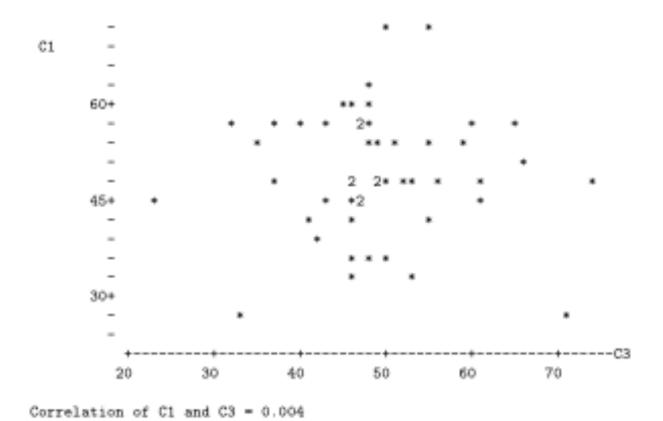

Simple regression and correlation

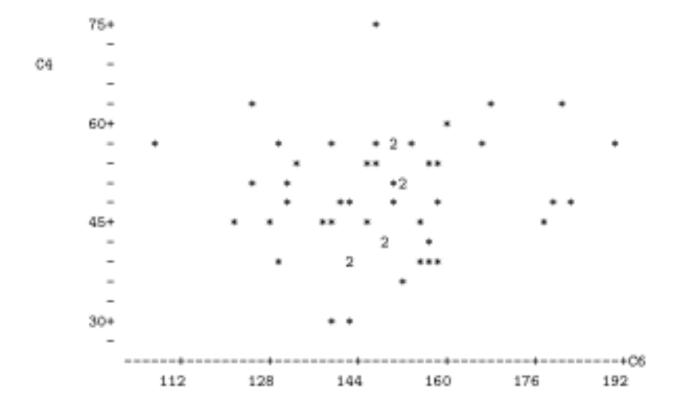
- Simple means one IV
- DV quantitative
- IV usually quantitative too


Simple regression and correlation

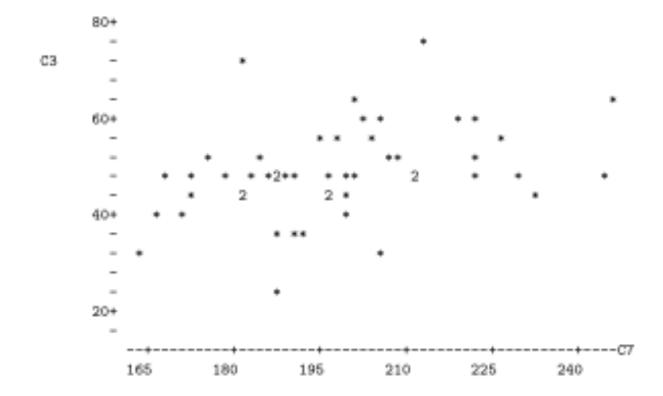
High School GPA	University GPA
88	86
78	73
87	89
86	81
77	67

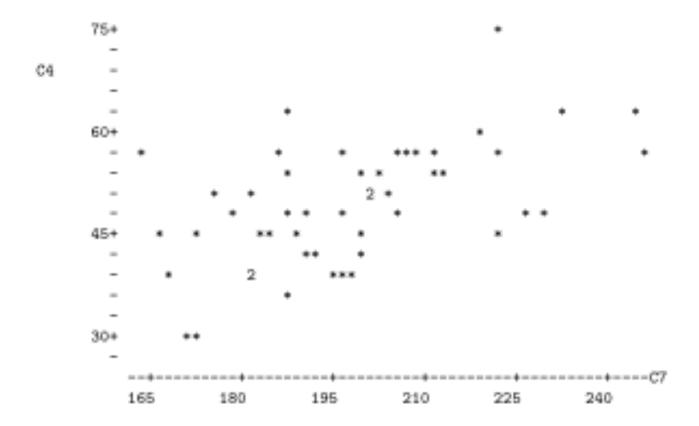
Scatterplot



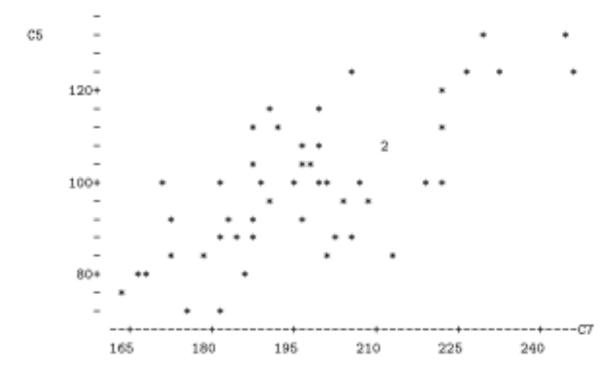

Least squares line

Correlation coefficient r

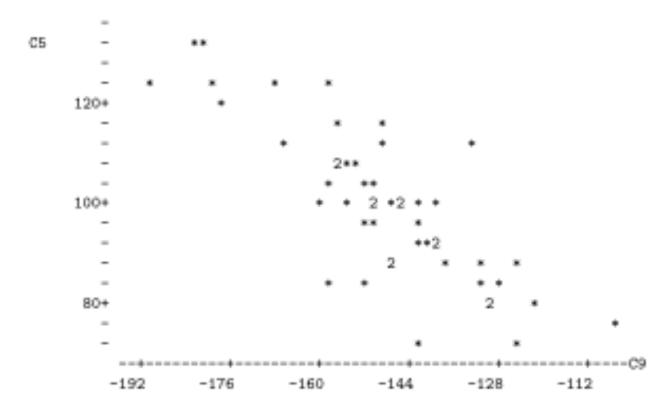

- $-1 \le r \le 1$
- r = +1 indicates a perfect positive linear relationship. All the points are exactly on a line with a positive slope.
- r = -1 indicates a perfect negative linear relationship. All the points are exactly on a line with a negative slope.
- r = 0 means no *linear* relationship (curve possible). Slope of least squares line = 0
- r² = proportion of variation explained



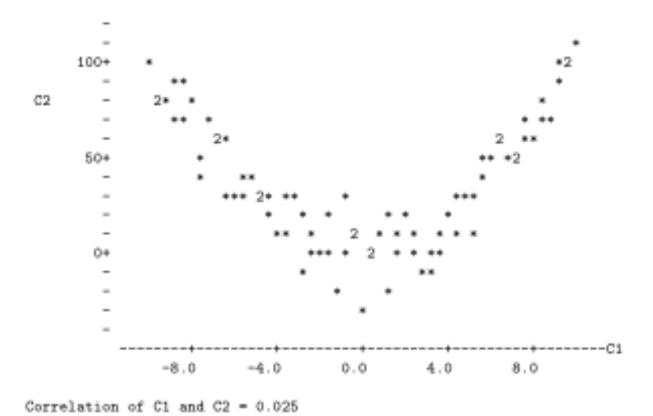
Correlation of C4 and C6 = 0.112

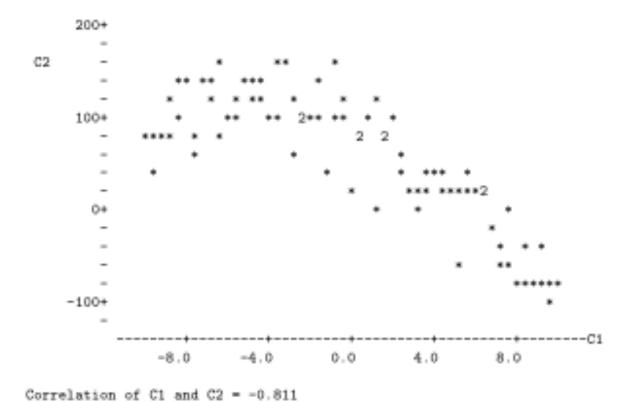

r = 0.368

Correlation of C3 and C7 = 0.368



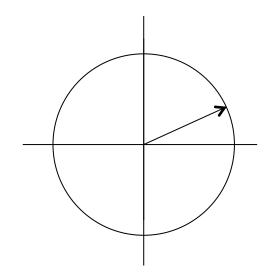
Correlation of C4 and C7 = 0.547




Correlation of C5 and C7 = 0.733

$$r = -0.822$$

Correlation of C5 and C9 = -0.822

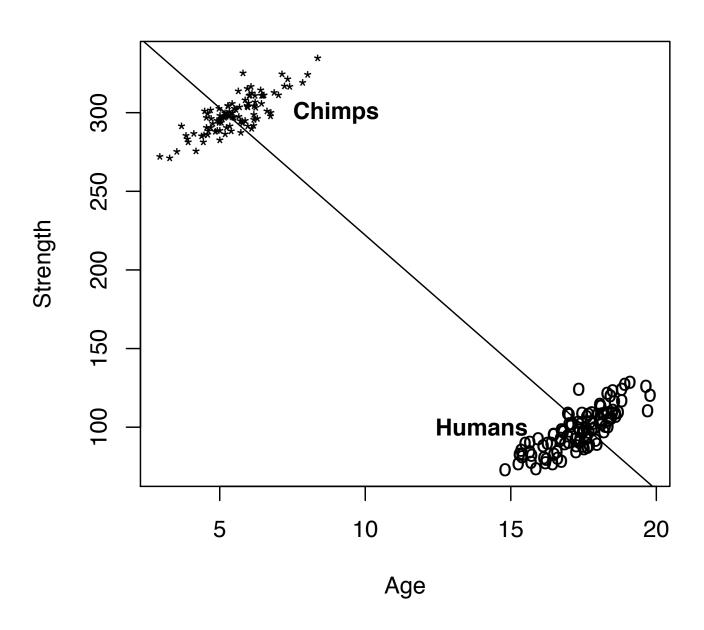


Why $-1 \le r \le 1$?

•
$$r = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2 \sum_{i=1}^{n} (Y_i - \overline{Y})^2}}$$

•
$$\cos(\theta) = \frac{\mathbf{a}'\mathbf{b}}{|\mathbf{a}| |\mathbf{b}|}$$

= $\frac{\mathbf{a}'\mathbf{b}}{\sqrt{\mathbf{a}'\mathbf{a} \mathbf{b}'\mathbf{b}}}$


A Statistical Model

Independently for i = 1, ..., n, let $Y_i = \beta_0 + \beta_1 x_i + \epsilon$, where $x_1, ..., x_n$ are observed, known constants $\epsilon_1, ..., \epsilon_n$ are independent $N(0, \sigma^2)$ random variables β_0, β_1 and σ^2 are unknown constants with $\sigma^2 > 0$.

One Independent Variable at a Time Can Produce Misleading Results

- The standard elementary tests all have a single independent variable, so they should be used with caution in practice.
- Example: Artificial and extreme, to make a point
- Suppose the correlation between Age and Strength is r = -0.96

Age and Strength

Need multiple regression

Multiple regression in scalar form

For i = 1, ..., n, let $Y_i = \beta_0 + \beta_1 x_{i1} + \cdots + \beta_k x_{ik} + \epsilon_i$, where x_{ij} are observed, known constants $\epsilon_1, ..., \epsilon_n$ are independent $N(0, \sigma^2)$ random variables β_i and σ^2 are unknown constants with $\sigma^2 > 0$.

Multiple regression in matrix form

where

X is an $n \times (k+1)$ matrix of observed constants $\boldsymbol{\beta}$ is a $(k+1) \times 1$ matrix of unknown constants $\boldsymbol{\epsilon}$ is multivariate normal. Write $\boldsymbol{\epsilon} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ σ^2 is an unknown constant

So we need

- Matrix algebra
- Random vectors, especially multivariate normal
- Software to do the computation

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. These Powerpoint slides are available from the course website:

http://www.utstat.toronto.edu/~brunner/oldclass/302f14