More Linear Algebra ${ }^{1}$ STA 302: Fall 2014

[^0]
Overview

(1) Things you already know
(2) Spectral decomposition
(3) Positive definite matrices

4 Square root matrices
(5) R

You already know about

- Matrices $\mathbf{A}=\left[a_{i j}\right]$
- Matrix addition and subtraction $\mathbf{A}+\mathbf{B}=\left[a_{i j}+b_{i j}\right]$
- Scalar multiplication $a \mathbf{B}=\left[a b_{i j}\right]$
- Matrix multiplication $\mathbf{A B}=\left[\sum_{k} a_{i k} b_{k j}\right]$
- Inverse $\mathbf{A}^{-1} \mathbf{A}=\mathbf{A} \mathbf{A}^{-1}=\mathbf{I}$
- Transpose $\mathbf{A}^{\prime}=\left[a_{j i}\right]$
- Symmetric matrices $\mathbf{A}=\mathbf{A}^{\prime}$
- Determinants
- Linear independence

Linear independence

\mathbf{X} be an $n \times p$ matrix of constants. The columns of \mathbf{X} are said to be linearly dependent if there exists $\mathbf{v} \neq \mathbf{0}$ with $\mathbf{X v}=\mathbf{0}$. We will say that the columns of \mathbf{X} are linearly independent if $\mathbf{X v}=\mathbf{0}$ implies $\mathbf{v}=\mathbf{0}$.

For example, show that \mathbf{A}^{-1} exists implies that the columns of \mathbf{A} are linearly independent.

$$
\mathbf{A} \mathbf{v}=\mathbf{0} \Rightarrow \mathbf{A}^{-1} \mathbf{A} \mathbf{v}=\mathbf{A}^{-1} \mathbf{0} \Rightarrow \mathbf{v}=\mathbf{0}
$$

How to show $\mathbf{A}^{-1 /}=\mathbf{A}^{\prime-1}$

Suppose $\mathbf{B}=\mathbf{A}^{-1}$, meaning $\mathbf{A B}=\mathbf{B A}=\mathbf{I}$. Must show two things: $\mathbf{B}^{\prime} \mathbf{A}^{\prime}=\mathbf{I}$ and $\mathbf{A}^{\prime} \mathbf{B}^{\prime}=\mathbf{I}$.

$$
\begin{aligned}
& \mathbf{A B}=\mathbf{I} \Rightarrow \mathbf{B}^{\prime} \mathbf{A}^{\prime}=\mathbf{I}^{\prime}=\mathbf{I} \\
& \mathbf{B A}=\mathbf{I} \Rightarrow \mathbf{A}^{\prime} \mathbf{B}^{\prime}=\mathbf{I}^{\prime}=\mathbf{I}
\end{aligned}
$$

Extras

You may not know about these, but we may use them occasionally

- Trace
- Rank
- Partitioned matrices

Trace of a square matrix

- Sum of diagonal elements
- Obvious: $\operatorname{tr}(\mathbf{A}+\mathbf{B})=\operatorname{tr}(\mathbf{A})+\operatorname{tr}(\mathbf{B})$
- Not obvious: $\operatorname{tr}(\mathbf{A B})=\operatorname{tr}(\mathbf{B A})$

Rank

- Row rank is the number of linearly independent rows
- Column rank is the number of linearly independent columns
- Rank of a matrix is the minimum of row rank and column rank
- $\operatorname{rank}(\mathbf{A B})=\min (\operatorname{rank}(\mathbf{A}), \operatorname{rank}(\mathbf{B}))$

Partitioned matrix

- A matrix of matrices

$$
\left[\begin{array}{c|c}
\mathrm{A} & \mathrm{~B} \\
\hline \mathrm{C} & \mathrm{D}
\end{array}\right]
$$

- Row by column (matrix) multiplication works, provided the matrices are the right sizes.

Eigenvalues and eigenvectors

Let $\mathbf{A}=\left[a_{i, j}\right]$ be an $n \times n$ matrix, so that the following applies to square matrices. \mathbf{A} is said to have an eigenvalue λ and (non-zero) eigenvector \mathbf{x} corresponding to λ if

$$
\mathbf{A} \mathbf{x}=\lambda \mathbf{x}
$$

- Eigenvalues are the λ values that solve the determinantal equation $|\mathbf{A}-\lambda \mathbf{I}|=0$.
- The determinant is the product of the eigenvalues:

$$
|\mathbf{A}|=\prod_{i=1}^{n} \lambda_{i}
$$

Spectral decomposition of symmetric matrices

The Spectral decomposition theorem says that every square and symmetric matrix $\mathbf{A}=\left[a_{i, j}\right]$ may be written

$$
\mathbf{A}=\mathbf{C D C}^{\prime},
$$

where the columns of \mathbf{C} (which may also be denoted $\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}$) are the eigenvectors of \mathbf{A}, and the diagonal matrix \mathbf{D} contains the corresponding eigenvalues.

$$
\mathbf{D}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

The eigenvectors may be chosen to be orthonormal, so that \mathbf{C} is an orthogonal matrix. That is, $\mathbf{C C}^{\prime}=\mathbf{C}^{\prime} \mathbf{C}=\mathbf{I}$.

Positive definite matrices

The $n \times n$ matrix \mathbf{A} is said to be positive definite if

$$
\mathbf{y}^{\prime} \mathbf{A} \mathbf{y}>0
$$

for all $n \times 1$ vectors $\mathbf{y} \neq \mathbf{0}$. It is called non-negative definite (or sometimes positive semi-definite) if $\mathbf{y}^{\prime} \mathbf{A y} \geq 0$.

Example: Show $\mathbf{X}^{\prime} \mathbf{X}$ non-negative definite

Let \mathbf{X} be an $n \times p$ matrix of real constants and \mathbf{y} be $p \times 1$. Then $\mathbf{Z}=\mathbf{X y}$ is $n \times 1$, and

$$
\begin{aligned}
& \mathbf{y}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right) \mathbf{y} \\
= & (\mathbf{X y})^{\prime}(\mathbf{X y}) \\
= & \mathbf{Z}^{\prime} \mathbf{Z} \\
= & \sum_{i=1}^{n} Z_{i}^{2} \geq 0
\end{aligned}
$$

Some properties of symmetric positive definite matrices

Variance-covariance matrices are often assumed positive definite.

For a symmetric matrix,

Positive definite
\Downarrow
All eigenvalues positive
\Downarrow
Inverse exists \Leftrightarrow Columns (rows) linearly independent

If a real symmetric matrix is also non-negative definite, as a variance-covariance matrix must be, Inverse exists \Rightarrow Positive definite

Showing Positive definite \Rightarrow Eigenvalues positive For example

Let \mathbf{A} be square and symmetric as well as positive definite.

- Spectral decomposition says $\mathbf{A}=\mathbf{C D C}^{\prime}$.
- Using $\mathbf{y}^{\prime} \mathbf{A y}>0$, let \mathbf{y} be an eigenvector, say the third one.
- Because eigenvectors are orthonormal,
$y^{\prime} \mathbf{A y}=y^{\prime} \mathbf{C D C}^{\prime} y$
$=\left(\begin{array}{lllll}0 & 0 & 1 & \cdots & 0\end{array}\right)\left(\begin{array}{cccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right)\left(\begin{array}{c}0 \\ 0 \\ 1 \\ \vdots \\ 0\end{array}\right)$
$=\lambda_{3}$
>0

Inverse of a diagonal matrix

Suppose $\mathbf{D}=\left[d_{i, j}\right]$ is a diagonal matrix with non-zero diagonal elements. It is easy to verify that

$$
\left(\begin{array}{cccc}
d_{1,1} & 0 & \cdots & 0 \\
0 & d_{2,2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n, n}
\end{array}\right)\left(\begin{array}{cccc}
1 / d_{1,1} & 0 & \cdots & 0 \\
0 & 1 / d_{2,2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 / d_{n, n}
\end{array}\right)=\mathbf{I}
$$

And

$$
\left(\begin{array}{cccc}
1 / d_{1,1} & 0 & \cdots & 0 \\
0 & 1 / d_{2,2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 / d_{n, n}
\end{array}\right)\left(\begin{array}{cccc}
d_{1,1} & 0 & \cdots & 0 \\
0 & d_{2,2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & d_{n, n}
\end{array}\right)=\mathbf{I}
$$

Showing Eigenvalues positive \Rightarrow Inverse exists

 For a symmetric, positive definite matrixLet \mathbf{A} be symmetric and positive definite. Then $\mathbf{A}=\mathbf{C D C}^{\prime}$ and its eigenvalues are positive.

Let $\mathbf{B}=\mathbf{C D}^{-1} \mathbf{C}^{\prime}$

Showing $\mathbf{B}=\mathbf{A}^{-1}$:

$$
\begin{aligned}
\mathbf{A B} & =\mathbf{C D C}^{\prime} \mathbf{C D}^{-1} \mathbf{C}^{\prime}=\mathbf{I} \\
\mathbf{B A} & =\mathbf{C D}^{-1} \mathbf{C}^{\prime} \mathbf{C D C}^{\prime}=\mathbf{I}
\end{aligned}
$$

So

$$
\mathbf{A}^{-1}=\mathbf{C D}^{-1} \mathbf{C}^{\prime}
$$

Square root matrices

For symmetric, non-negative definite matrices
Define

$$
\mathbf{D}^{1 / 2}=\left(\begin{array}{cccc}
\sqrt{\lambda_{1}} & 0 & \cdots & 0 \\
0 & \sqrt{\lambda_{2}} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \sqrt{\lambda_{n}}
\end{array}\right)
$$

So that
$\begin{aligned} \mathbf{D}^{1 / 2} \mathbf{D}^{1 / 2} & =\left(\begin{array}{cccc}\sqrt{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_{n}}\end{array}\right)\left(\begin{array}{cccc}\sqrt{\lambda_{1}} & 0 & \cdots & 0 \\ 0 & \sqrt{\lambda_{2}} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \sqrt{\lambda_{n}}\end{array}\right) \\ & =\left(\begin{array}{ccccc}\lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{n}\end{array}\right)=\mathbf{D}\end{aligned}$

For a non-negative definite, symmetric matrix A

Define

$$
\mathbf{A}^{1 / 2}=\mathbf{C D}^{1 / 2} \mathbf{C}^{\prime}
$$

So that

$$
\begin{aligned}
\mathbf{A}^{1 / 2} \mathbf{A}^{1 / 2} & =\mathbf{C D}^{1 / 2} \mathbf{C}^{\prime} \mathbf{C D}^{1 / 2} \mathbf{C}^{\prime} \\
& =\mathbf{C D}^{1 / 2} \mathbf{I} \mathbf{D}^{1 / 2} \mathbf{C}^{\prime} \\
& =\mathbf{C D}^{1 / 2} \mathbf{D}^{1 / 2} \mathbf{C}^{\prime} \\
& =\mathbf{C D C} \\
& =\mathbf{A}
\end{aligned}
$$

The square root of the inverse is the inverse of the square root

Let \mathbf{A} be symmetric and positive definite, with $\mathbf{A}=\mathbf{C D C}^{\prime}$.
Let $\mathbf{B}=\mathbf{C D}^{-1 / 2} \mathbf{C}^{\prime}$. What is $\mathbf{D}^{-1 / 2}$?
Show $\mathbf{B}=\left(\mathbf{A}^{-1}\right)^{1 / 2}$

$$
\begin{aligned}
\mathbf{B B} & =\mathbf{C D}^{-1 / 2} \mathbf{C}^{\prime} \mathbf{C D}^{-1 / 2} \mathbf{C}^{\prime} \\
& =\mathbf{C D}^{-1} \mathbf{C}^{\prime}=\mathbf{A}^{-1}
\end{aligned}
$$

Show $\mathbf{B}=\left(\mathbf{A}^{1 / 2}\right)^{-1}$

Just write

$$
\begin{aligned}
\mathbf{A}^{1 / 2} \mathbf{B} & =\mathbf{C D}^{1 / 2} \mathbf{C}^{\prime} \mathbf{C D}^{-1 / 2} \mathbf{C}^{\prime}=\mathbf{I} \\
\mathbf{B A}^{1 / 2} & =\mathbf{C D}^{-1 / 2} \mathbf{C}^{\prime} \mathbf{C D}^{1 / 2} \mathbf{C}^{\prime}=\mathbf{I}
\end{aligned}
$$

$$
\mathbf{A}^{-1 / 2}=\mathbf{C D}^{-1 / 2} \mathbf{C}^{\prime}
$$

Matrix calculation with R

```
> is.matrix(3) # Is the number 3 a 1x1 matrix?
[1] FALSE
```

> treecorr $=$ cor (trees) ; treecorr

	Girth	Height	Volume
Girth	1.0000000	0.5192801	0.9671194
Height	0.5192801	1.0000000	0.5982497
Volume	0.9671194	0.5982497	1.0000000

> is.matrix(treecorr)
[1] TRUE

Creating matrices

Bind rows into a matrix
> \# Bind rows of a matrix together
$>A=r b i n d(c(3,2,6,8)$,
$+\quad c(2,10,-7,4)$,
$+\quad \mathrm{c}(6,6,9,1) \quad$; A

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	3	2	6	8
$[2]$,	2	10	-7	4
$[3]$,	6	6	9	1

> \# Transpose
$>\mathrm{t}$ (A)

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	3	2	6
$[2]$,	2	10	6
$[3]$,	6	-7	9
$[4]$,	8	4	1

Matrix multiplication

Remember, \mathbf{A} is 3×4
$>\# U=A A \prime(3 x 3), V=A^{\prime} A(4 \times 4)$
$>\mathrm{U}=\mathrm{A} \% * \% \mathrm{t}(\mathrm{A})$
$>\mathrm{V}=\mathrm{t}(\mathrm{A}) \% * \% \mathrm{~A} ; \mathrm{V}$

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	49	62	58	38
$[2]$,	62	140	-4	62
$[3]$,	58	-4	166	29
$[4]$,	38	62	29	81

Determinants

> \# U = AA' (3x3), V = A'A (4x4)
$>$ \# So rank(V) cannot exceed 3 and $\operatorname{det}(V)=0$
$>\operatorname{det}(U) ; \operatorname{det}(V)$
[1] 1490273
[1] $-3.622862 \mathrm{e}-09$

Inverse of \mathbf{U} exists, but inverse of \mathbf{V} does not.

Inverses

- The solve function is for solving systems of linear equations like $\mathbf{M x}=\mathbf{b}$.
- Just typing solve(M) gives \mathbf{M}^{-1}.
> solve(U)

	$[, 1]$	$[, 2]$	$[, 3]$
$[1]$,	0.0173505123	$-8.508508 \mathrm{e}-04$	$-1.029342 \mathrm{e}-02$
$[2]$,	-0.0008508508	$5.997559 \mathrm{e}-03$	$2.013054 \mathrm{e}-06$
$[3]$,	-0.0102934160	$2.013054 \mathrm{e}-06$	$1.264265 \mathrm{e}-02$

> solve(V)

Error in solve.default(V) :
system is computationally singular: reciprocal condition number $=6.64193 e-18$

Eigenvalues and eigenvectors

> eigen(U)
\$values

$$
\begin{array}{llll}
{[1]} & 234.01162 & 162.89294 & 39.09544
\end{array}
$$

\$vectors

$$
[, 1] \quad[, 2] \quad[, 3]
$$

[1,] $-0.60253750 .1592598 \quad 0.78203893$
[2,] -0.2964610 -0.9544379-0.03404605
$[3]-,0.7409854 \quad 0.2523581-0.62229894$

V should have at least one zero eigenvalue

```
> eigen(V)
```

\$values
[1] $2.340116 \mathrm{e}+02 \quad 1.628929 \mathrm{e}+02 \quad 3.909544 \mathrm{e}+01 \quad-1.012719 \mathrm{e}-14$
\$vectors

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	-0.4475551	0.006507269	-0.2328249	0.863391352
$[2]$,	-0.5632053	-0.604226296	-0.4014589	-0.395652773
$[3]$,	-0.5366171	0.776297432	-0.1071763	-0.312917928
$[4]$,	-0.4410627	-0.179528649	0.8792818	0.009829883

Spectral decomposition $\mathbf{V}=\mathbf{C D C}^{\prime}$

> eigenV = eigen(V)
> C = eigenV\$vectors; D = diag(eigenV\$values); D

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	234.0116	0.0000	0.00000	$0.000000 \mathrm{e}+00$
$[2]$,	0.0000	162.8929	0.00000	$0.000000 \mathrm{e}+00$
$[3]$,	0.0000	0.0000	39.09544	$0.000000 \mathrm{e}+00$
$[4]$,	0.0000	0.0000	0.00000	$-1.012719 \mathrm{e}-14$

> \# C is an orthoganal matrix
> $\mathrm{C} \%$ \% t (C)

$$
[, 1] \quad[, 2] \quad[, 3] \quad[, 4]
$$

[1,] $1.000000 \mathrm{e}+005.551115 \mathrm{e}-170.000000 \mathrm{e}+00-3.989864 \mathrm{e}-17$
[2,] $5.551115 \mathrm{e}-17 \quad 1.000000 \mathrm{e}+002.636780 \mathrm{e}-16 \quad 3.556183 \mathrm{e}-17$
[3,] $0.000000 \mathrm{e}+002.636780 \mathrm{e}-161.000000 \mathrm{e}+00 \quad 2.558717 \mathrm{e}-16$
[4,] -3.989864e-17 3.556183e-17 2.558717e-16 $1.000000 \mathrm{e}+00$

Verify $\mathrm{V}=\mathrm{CDC}^{\prime}$

$>\mathrm{V} ; \mathrm{C} \% * \% \mathrm{D} \% * \% \mathrm{t}$ (C)

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	49	62	58	38
$[2]$,	62	140	-4	62
$[3]$,	58	-4	166	29
$[4]$,	38	62	29	81

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	49	62	58	38
$[2]$,	62	140	-4	62
$[3]$,	58	-4	166	29
$[4]$,	38	62	29	81

Square root matrix $\mathrm{V}^{1 / 2}=\mathrm{CD}^{1 / 2} \mathbf{C}^{\prime}$

```
> sqrtV = C %*% sqrt(D) %*% t(C)
```

Warning message:
In sqrt(D) : NaNs produced
> \# Multiply to get V
> sqrtV \%*\% sqrtV; V

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	NaN	NaN	NaN	NaN
$[2]$,	NaN	NaN	NaN	NaN
$[3]$,	NaN	NaN	NaN	NaN
$[4]$,	NaN	NaN	NaN	NaN
$, 1]$	$[, 2]$	$[, 3]$	$[, 4]$	
$[1]$,	49	62	58	38
$[2]$,	62	140	-4	62
$[3]$,	58	-4	166	29
$[4]$,	38	62	29	81

What happened?

> D; sqrt(D)

	$[, 1]$	$[, 2]$	$[, 3]$	$[, 4]$
$[1]$,	234.0116	0.0000	0.00000	$0.000000 \mathrm{e}+00$
$[2]$,	0.0000	162.8929	0.00000	$0.000000 \mathrm{e}+00$
$[3]$,	0.0000	0.0000	39.09544	$0.000000 \mathrm{e}+00$
$[4]$,	0.0000	0.0000	0.00000	$-1.012719 \mathrm{e}-14$

$$
[, 1] \quad[, 2] \quad[, 3][, 4]
$$

[1,] 15.29744 0.00000 0.000000 0
[2,] $0.0000012 .762950 .000000 \quad 0$
[3,] $0.00000 \quad 0.000006 .252635 \quad 0$
[4,] $0.00000 \quad 0.000000 .000000 \mathrm{NaN}$

Warning message:
In sqrt(D) : NaNs produced

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IATEX}_{\mathrm{E}}$ source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/302f14

[^0]: ${ }^{1}$ See Chapter 2 of Linear models in statistics for more detail. This slide show is an open-source document. See last slide for copyright information.

