STA 302 Formulas

$M_{Y}(t)=E\left(e^{Y t}\right)$

$$
M_{a Y}(t)=M_{Y}(a t)
$$

$M_{Y+a}(t)=e^{a t} M_{Y}(t)$

$$
M_{\sum_{i=1}^{n} Y_{i}}(t)=\prod_{i=1}^{n} M_{Y_{i}}(t)
$$

$Y \sim N\left(\mu, \sigma^{2}\right)$ means $M_{Y}(t)=e^{\mu t+\frac{1}{2} \sigma^{2} t^{2}}$
$W \sim \chi^{2}(\nu)$ means $M_{W}(t)=(1-2 t)^{-\nu / 2}$
If $W_{1}, \ldots, W_{n} \stackrel{i n d}{\sim} \chi^{2}\left(\nu_{i}\right)$, then $\sum_{i=1}^{n} W_{i} \sim \chi^{2}\left(\sum_{i=1}^{n} \nu_{i}\right)$
If $Z \sim N(0,1)$ then $Z^{2} \sim \chi^{2}(1)$
If $W=W_{1}+W_{2}$ with W_{1} and W_{2} independent, $W \sim \chi^{2}\left(\nu_{1}+\nu_{2}\right), W_{2} \sim \chi^{2}\left(\nu_{2}\right)$ then $W_{1} \sim \chi^{2}\left(\nu_{1}\right)$
Columns of \mathbf{A} linearly dependent means there is a vector $\mathbf{v} \neq \mathbf{0}$ with $\mathbf{A v}=\mathbf{0}$.
Columns of \mathbf{A} linearly independent means that $\mathbf{A v}=\mathbf{0}$ implies $\mathbf{v}=\mathbf{0}$.
A positive definite means $\mathbf{v}^{\prime} \mathbf{A} \mathbf{v}>0$ for all vectors $\mathbf{v} \neq \mathbf{0}$.
$\boldsymbol{\Sigma}=\mathbf{C D C}^{\prime}$
$\boldsymbol{\Sigma}^{-1}=\mathbf{C D}^{-1} \mathbf{C}^{\prime}$
$\boldsymbol{\Sigma}^{1 / 2}=\mathbf{C D}^{1 / 2} \mathbf{C}^{\prime}$
$\boldsymbol{\Sigma}^{-1 / 2}=\mathbf{C D}^{-1 / 2} \mathbf{C}^{\prime}$
$\operatorname{cov}(\mathbf{Y})=E\left\{\left(\mathbf{Y}-\boldsymbol{\mu}_{y}\right)\left(\mathbf{Y}-\boldsymbol{\mu}_{y}\right)^{\prime}\right\}$
$C(\mathbf{Y}, \mathbf{T})=E\left\{\left(\mathbf{Y}-\boldsymbol{\mu}_{y}\right)\left(\mathbf{T}-\boldsymbol{\mu}_{t}\right)^{\prime}\right\}$
$\operatorname{cov}(\mathbf{Y})=E\left\{\mathbf{Y} \mathbf{Y}^{\prime}\right\}-\boldsymbol{\mu}_{y} \boldsymbol{\mu}_{y}^{\prime}$
$\operatorname{cov}(\mathbf{A Y})=\mathbf{A} \operatorname{cov}(\mathbf{Y}) \mathbf{A}^{\prime}$
$M_{\mathbf{Y}}(\mathbf{t})=E\left(e^{\mathbf{t}^{\prime} \mathbf{Y}}\right)$
$M_{\mathbf{A Y}}(\mathbf{t})=M_{\mathbf{Y}}\left(\mathbf{A}^{\prime} \mathbf{t}\right)$
$M_{\mathbf{Y}+\mathbf{c}}(\mathbf{t})=e^{\mathbf{t}^{\prime} \mathbf{c}} M_{\mathbf{Y}}(\mathbf{t})$
$\mathbf{Y} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ means $M_{\mathbf{Y}}(\mathbf{t})=e^{\mathbf{t}^{\prime} \boldsymbol{\mu}+\frac{1}{2} \mathbf{t}^{\prime} \boldsymbol{\Sigma} \mathbf{t}}$
\mathbf{Y}_{1} and \mathbf{Y}_{2} are independent if and only if $M_{\left(\mathbf{Y}_{1}, \mathbf{Y}_{2}\right)}\left(\mathbf{t}_{1}, \mathbf{t}_{2}\right)=M_{\mathbf{Y}_{1}}\left(\mathbf{t}_{1}\right) M_{\mathbf{Y}_{2}}\left(\mathbf{t}_{2}\right)$
If $\mathbf{Y} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then $\mathbf{A Y} \sim N_{q}\left(\mathbf{A} \boldsymbol{\mu}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}\right)$,
$Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+\beta_{k} x_{i k}+\epsilon_{i} \quad \epsilon_{1}, \ldots, \epsilon_{n}$ independent $N\left(0, \sigma^{2}\right)$
$\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$ with $\boldsymbol{\epsilon} \sim N_{n}\left(\mathbf{0}, \sigma^{2} \mathbf{I}_{n}\right)$ $\widehat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y} \sim N_{k+1}\left(\boldsymbol{\beta}, \sigma^{2}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1}\right)$
$\widehat{\mathbf{Y}}=\mathbf{X} \widehat{\boldsymbol{\beta}}=\mathbf{H Y}$, where $\mathbf{H}=\mathbf{X}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime}$
$\widehat{\boldsymbol{\epsilon}}=\mathbf{Y}-\widehat{\mathbf{Y}}=(\mathbf{I}-\mathbf{H}) \mathbf{Y}$
$\widehat{\boldsymbol{\beta}}$ and $\widehat{\boldsymbol{\epsilon}}$ are independent under normality.

$$
\frac{S S E}{\sigma^{2}}=\frac{\hat{\epsilon}^{\prime} \hat{\epsilon}}{\sigma^{2}} \sim \chi^{2}(n-k-1)
$$

$\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}=\sum_{i=1}^{n}\left(Y_{i}-\widehat{Y}_{i}\right)^{2}+\sum_{i=1}^{n}\left(\widehat{Y}_{i}-\bar{Y}\right)^{2}$
$S S T=S S E+S S R$ and $R^{2}=\frac{S S R}{S S T}$
$T=\frac{Z}{\sqrt{W / \nu}} \sim t(\nu)$ $F=\frac{W_{1} / \nu_{1}}{W_{2} / \nu_{2}} \sim F\left(\nu_{1}, \nu_{2}\right)$
$T=\frac{\mathbf{a}^{\prime} \widehat{\boldsymbol{\beta}}-\mathbf{a}^{\prime} \boldsymbol{\beta}}{\sqrt{M S E \mathbf{a}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{a}}} \sim t(n-k-1)$ $T=\frac{Y_{0}-\mathbf{x}_{0}^{\prime} \widehat{\boldsymbol{\beta}}}{\sqrt{M S E\left(1+\mathbf{x}_{0}^{\prime}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{x}_{0}\right)}} \sim t(n-k-1)$
$F=\frac{(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t})^{\prime}\left(\mathbf{C}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{C}^{\prime}\right)^{-1}(\mathbf{C} \widehat{\boldsymbol{\beta}}-\mathbf{t})}{q M S E}=\frac{S S R-S S R(\text { reduced })}{q M S E} \sim F(q, n-k-1)$, where $M S E=\frac{S S E}{n-k-1}$
$F=\left(\frac{a}{1-a}\right)\left(\frac{n-k-1}{q}\right) \Leftrightarrow a=\frac{q F}{n-k-1+q F}$, where $a=\frac{R^{2}-R^{2}(\text { reduced })}{1-R^{2}(\text { reduced })} \quad r_{x y}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)\left(Y_{i}-\bar{Y}\right)}{\sqrt{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(Y_{i}-\bar{Y}\right)^{2}}}$
$\log \left(\frac{\pi_{i}}{1-\pi_{i}}\right)=\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{k} x_{i, k}$
$\pi_{i}=\frac{e^{\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{k} x_{i, k}}}{1+e^{\beta_{0}+\beta_{1} x_{i, 1}+\ldots+\beta_{k} x_{i, k}}}$

