Random Vectors ${ }^{1}$ STA 302 Fall 2013

[^0]
Overview

(1) Definitions and Basic Results
(2) Moment-generating Functions

Random Vectors and Matrices
 See Chapter 3 of Linear models in statistics for more detail.

A random matrix is just a matrix of random variables. Their joint probability distribution is the distribution of the random matrix. Random matrices with just one column (say, $p \times 1$) may be called random vectors.

Expected Value

The expected value of a matrix is defined as the matrix of expected values. Denoting the $p \times c$ random matrix \mathbf{X} by $\left[X_{i, j}\right]$,

$$
E(\mathbf{X})=\left[E\left(X_{i, j}\right)\right]
$$

Immediately we have natural properties like

$$
\begin{aligned}
E(\mathbf{X}+\mathbf{Y}) & =E\left(\left[X_{i, j}\right]+\left[Y_{i, j}\right]\right) \\
& =\left[E\left(X_{i, j}+Y_{i, j}\right)\right] \\
& =\left[E\left(X_{i, j}\right)+E\left(Y_{i, j}\right)\right] \\
& =\left[E\left(X_{i, j}\right)\right]+\left[E\left(Y_{i, j}\right)\right] \\
& =E(\mathbf{X})+E(\mathbf{Y})
\end{aligned}
$$

Moving a constant through the expected value sign

Let $\mathbf{A}=\left[a_{i, j}\right]$ be an $r \times p$ matrix of constants, while \mathbf{X} is still a $p \times c$ random matrix. Then

$$
\begin{aligned}
E(\mathbf{A X}) & =E\left(\left[\sum_{k=1}^{p} a_{i, k} X_{k, j}\right]\right) \\
& =\left[E\left(\sum_{k=1}^{p} a_{i, k} X_{k, j}\right)\right] \\
& =\left[\sum_{k=1}^{p} a_{i, k} E\left(X_{k, j}\right)\right] \\
& =\mathbf{A} E(\mathbf{X}) .
\end{aligned}
$$

Similar calculations yield $E(\mathbf{A X B})=\mathbf{A} E(\mathbf{X}) \mathbf{B}$.

Variance-Covariance Matrices

Let \mathbf{X} be a $p \times 1$ random vector with $E(\mathbf{X})=\boldsymbol{\mu}$. The variance-covariance matrix of \mathbf{X} (sometimes just called the covariance matrix), denoted by $\operatorname{cov}(\mathbf{X})$, is defined as

$$
\operatorname{cov}(\mathbf{X})=E\left\{(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{\prime}\right\} .
$$

$\operatorname{cov}(\mathrm{X})=E\left\{(\mathrm{X}-\mu)(\mathrm{X}-\mu)^{\prime}\right\}$

$$
\begin{aligned}
\operatorname{cov}(\mathbf{X}) & =E\left\{\left(\begin{array}{l}
X_{1}-\mu_{1} \\
X_{2}-\mu_{2} \\
X_{3}-\mu_{3}
\end{array}\right)\left(\begin{array}{lll}
X_{1}-\mu_{1} & X_{2}-\mu_{2} & \left.X_{3}-\mu_{3}\right)
\end{array}\right\}\right. \\
& =E\left\{\begin{array}{lll}
\left(X_{1}-\mu_{1}\right)^{2} & \left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right) & \left(X_{1}-\mu_{1}\right)\left(X_{3}-\mu_{3}\right) \\
\left(X_{2}-\mu_{2}\right)\left(X_{1}-\mu_{1}\right) & \left(X_{2}-\mu_{2}\right)^{2} & \left(X_{2}-\mu_{2}\right)\left(X_{3}-\mu_{3}\right) \\
\left(X_{3}-\mu_{3}\right)\left(X_{1}-\mu_{1}\right) & \left(X_{3}-\mu_{3}\right)\left(X_{2}-\mu_{2}\right) & \left(X_{3}-\mu_{3}\right)^{2}
\end{array}\right) \\
& =\left(\begin{array}{lll}
E\left\{\left(X_{1}-\mu_{1}\right)^{2}\right\} & E\left\{\left(X_{1}-\mu_{1}\right)\left(X_{2}-\mu_{2}\right)\right\} & E\left\{(X _ { 1 } - \mu _ { 1 }) \left(X_{3}-\right.\right. \\
E\left\{\left(X_{2}-\mu_{2}\right)\left(X_{1}-\mu_{1}\right)\right\} & E\left\{\left(X_{2}-\mu_{2}\right)^{2}\right\} & E\left\{(X _ { 2 } - \mu _ { 2 }) \left(X_{3}-\right.\right. \\
E\left\{\left(X_{3}-\mu_{3}\right)\left(X_{1}-\mu_{1}\right)\right\} & E\left\{\left(X_{3}-\mu_{3}\right)\left(X_{2}-\mu_{2}\right)\right\} & E\left\{\left(X_{3}-\mu_{3}\right)^{2}\right\}
\end{array}\right. \\
& =\left(\begin{array}{lll}
\operatorname{Var}\left(X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \operatorname{Cov}\left(X_{1}, X_{3}\right) \\
\operatorname{Cov}\left(X_{1}, X_{2}\right) & \operatorname{Var}\left(X_{2}\right) & \operatorname{Cov}\left(X_{2}, X_{3}\right) \\
\operatorname{Cov}\left(X_{1}, X_{3}\right) & \operatorname{Cov}\left(X_{2}, X_{3}\right) & \operatorname{Var}\left(X_{3}\right)
\end{array}\right) .
\end{aligned}
$$

So, the covariance matrix $\operatorname{cov}(\mathbf{X})$ is a $p \times p$ symmetric matrix with variances on the main diagonal and covariances on the off-diagonals.

Analogous to $\operatorname{Var}(a X)=a^{2} \operatorname{Var}(X)$

Let \mathbf{X} be a $p \times 1$ random vector with $E(\mathbf{X})=\boldsymbol{\mu}$ and $\operatorname{cov}(\mathbf{X})=\boldsymbol{\Sigma}$, while $\mathbf{A}=\left[a_{i, j}\right]$ is an $r \times p$ matrix of constants. Then

$$
\begin{aligned}
\operatorname{cov}(\mathbf{A X}) & =E\left\{(\mathbf{A X}-\mathbf{A} \boldsymbol{\mu})(\mathbf{A X}-\mathbf{A} \boldsymbol{\mu})^{\prime}\right\} \\
& =E\left\{\mathbf{A}(\mathbf{X}-\boldsymbol{\mu})(\mathbf{A}(\mathbf{X}-\boldsymbol{\mu}))^{\prime}\right\} \\
& =E\left\{\mathbf{A}(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{\prime} \mathbf{A}^{\prime}\right\} \\
& =\mathbf{A} E\left\{(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{\prime}\right\} \mathbf{A}^{\prime} \\
& =\mathbf{A} \operatorname{cov}(\mathbf{X}) \mathbf{A}^{\prime} \\
& =\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}
\end{aligned}
$$

Positive definite is a natural assumption

For covariance matrices

- $\operatorname{cov}(\mathbf{X})=\boldsymbol{\Sigma}$
- $\boldsymbol{\Sigma}$ positive definite means $\mathbf{a}^{\prime} \boldsymbol{\Sigma} \mathbf{a}>0$. for all $\mathbf{a} \neq \mathbf{0}$.
- $Y=\mathbf{a}^{\prime} \mathbf{X}=a_{1} X_{1}+\cdots+a_{p} X_{p}$ is a scalar random variable.
- $\operatorname{Var}(Y)=\mathbf{a}^{\prime} \boldsymbol{\Sigma} \mathbf{a}$
- $\boldsymbol{\Sigma}$ positive definite just says that the variance of any (non-trivial) linear combination is positive.
- This is often what you want (but not always).

Matrix of covariances between two random vectors

Let \mathbf{X} be a $p \times 1$ random vector with $E(\mathbf{X})=\boldsymbol{\mu}_{x}$ and let \mathbf{Y} be a $q \times 1$ random vector with $E(\mathbf{Y})=\boldsymbol{\mu}_{y}$. The $p \times q$ matrix of covariances between the elements of \mathbf{X} and the elements of \mathbf{Y} is

$$
C(\mathbf{X}, \mathbf{Y})=E\left\{\left(\mathbf{X}-\boldsymbol{\mu}_{x}\right)\left(\mathbf{Y}-\boldsymbol{\mu}_{y}\right)^{\prime}\right\} .
$$

Adding a constant has no effect

On variances and covariances

It's clear from the definitions:

- $\operatorname{cov}(\mathbf{X})=E\left\{(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{\prime}\right\}$
- $C(\mathbf{X}, \mathbf{Y})=E\left\{\left(\mathbf{X}-\boldsymbol{\mu}_{x}\right)\left(\mathbf{Y}-\boldsymbol{\mu}_{y}\right)^{\prime}\right\}$

That

- $\operatorname{cov}(\mathbf{X}+\mathbf{a})=\operatorname{cov}(\mathbf{X})$
- $C(\mathbf{X}+\mathbf{a}, \mathbf{Y}+\mathbf{b})=C(\mathbf{X}, \mathbf{Y})$

For example, $E(\mathbf{X}+\mathbf{a})=\boldsymbol{\mu}+\mathbf{a}$, so

$$
\begin{aligned}
\operatorname{cov}(\mathbf{X}+\mathbf{a}) & =E\left\{(\mathbf{X}+\mathbf{a}-(\boldsymbol{\mu}+\mathbf{a}))(\mathbf{X}+\mathbf{a}-(\boldsymbol{\mu}+\mathbf{a}))^{\prime}\right\} \\
& =E\left\{(\mathbf{X}-\boldsymbol{\mu})(\mathbf{X}-\boldsymbol{\mu})^{\prime}\right\} \\
& =\operatorname{cov}(\mathbf{X})
\end{aligned}
$$

Moment-generating function

Of a p-dimensional random vector \mathbf{X}

- $M_{\mathbf{X}}(\mathbf{t})=E\left(e^{t^{\mathbf{t}} \mathbf{x}}\right)$
- Corresponds uniquely to the probability distribution.

Section 4.3 of Linear models in statistics has some material on moment-generating functions.

$$
\begin{aligned}
M_{\mathbf{A X}}(\mathbf{t}) & =E\left(e^{\mathbf{t}^{\prime} \mathbf{A} \mathbf{x}}\right) \\
& =E\left(e^{\left(\mathbf{A}^{\prime} \mathbf{t}\right)^{\prime} \mathbf{x}}\right) \\
& =M_{\mathbf{X}}\left(\mathbf{A}^{\prime} \mathbf{t}\right)
\end{aligned}
$$

Note that \mathbf{t} is the same length as $\mathbf{Y}=\mathbf{A X}$: The number of rows in \mathbf{A}.

$M_{\mathrm{X}+\mathrm{c}}(\mathrm{t})=e^{\mathrm{t}^{\prime} \mathrm{c}} M_{\mathrm{X}}(\mathrm{t})$

Analogue of $M_{X+c}(t)=e^{c t} M_{X}(t)$

$$
\begin{aligned}
M_{\mathbf{X}+\mathbf{c}}(\mathbf{t}) & =E\left(e^{\mathbf{t}^{\prime}(\mathbf{X}+\mathbf{c})}\right) \\
& =E\left(e^{\mathbf{t}^{\prime} \mathbf{X}+\mathbf{t}^{\prime} \mathbf{c}}\right) \\
& =e^{\mathbf{t}^{\prime} \mathbf{c}} E\left(e^{\mathbf{t}^{\prime} \mathbf{X}}\right) \\
& =e^{\mathbf{t}^{\prime} \mathbf{c}} M_{\mathbf{X}}(\mathbf{t})
\end{aligned}
$$

Independence

Two random vectors \mathbf{X}_{1} and \mathbf{X}_{2} are independent if and only if the moment-generating function of their joint distribution is the product of their moment-generating functions.

Proof: Suppose \mathbf{X}_{1} and \mathbf{X}_{2} are independent, with

$\mathbf{X}=\left(\frac{\mathbf{X}_{1}}{\mathbf{X}_{2}}\right)$ and $\mathbf{t}=\left(\frac{\mathbf{t}_{1}}{\mathbf{t}_{2}}\right)$. Then

$$
\begin{aligned}
M_{\mathbf{X}}(\mathbf{t}) & =E\left(e^{\mathbf{t}^{\prime} \mathbf{x}}\right) \\
& =E\left(e^{\mathbf{t}_{1}^{\prime} \mathbf{x}_{1}+\mathbf{t}_{2}^{\prime} \mathbf{x}_{2}}\right)=E\left(e^{\mathbf{t}_{1}^{\prime} \mathbf{x}_{1}} e^{\mathbf{t}_{2}^{\prime} \mathbf{X}_{2}}\right) \\
& =\iint e^{t_{1}^{\prime} \mathbf{x}_{1}} e^{\mathbf{t}_{2}^{\prime} \mathbf{x}_{2}} f_{\mathbf{X}_{1}}\left(\mathbf{x}_{1}\right) f_{\mathbf{X}_{2}}\left(\mathbf{x}_{2}\right) d\left(\mathbf{x}_{1}\right) d\left(\mathbf{x}_{2}\right) \\
& =\int e^{t_{2}^{\prime} \mathbf{x}_{2}}\left(\int e^{t_{1}^{\prime} \mathbf{x}_{1}} f_{\mathbf{X}_{1}}\left(\mathbf{x}_{1}\right) d\left(\mathbf{x}_{1}\right)\right) f_{\mathbf{X}_{2}}\left(\mathbf{x}_{2}\right) d\left(\mathbf{x}_{2}\right) \\
& =\int e^{t_{2}^{\prime} \mathbf{x}_{2}} M_{\mathbf{X}_{1}}\left(\mathbf{t}_{1}\right) f_{\mathbf{X}_{2}}\left(\mathbf{x}_{2}\right) d\left(\mathbf{x}_{2}\right) \\
& =M_{\mathbf{X}_{1}}\left(\mathbf{t}_{1}\right) M_{\mathbf{X}_{2}}\left(\mathbf{t}_{2}\right)
\end{aligned}
$$

By uniqueness, it's an if and only if.
\mathbf{X}_{1} and \mathbf{X}_{2} independent implies that $\mathbf{Y}_{1}=g_{1}\left(\mathbf{X}_{1}\right)$ and $\mathbf{Y}_{2}=g_{2}\left(\mathbf{X}_{2}\right)$ are independent.

Let

$$
\begin{aligned}
\mathbf{Y}= & \left(\frac{\mathbf{Y}_{1}}{\mathbf{Y}_{2}}\right)=\left(\frac{g_{1}\left(\mathbf{X}_{1}\right)}{g_{2}\left(\mathbf{X}_{2}\right)}\right) \text { and } \mathbf{t}=\left(\frac{\mathbf{t}_{1}}{\mathbf{t}_{2}}\right) . \text { Then } \\
M_{\mathbf{Y}}(\mathbf{t}) & =E\left(e^{\mathbf{t}^{\prime} \mathbf{Y}}\right) \\
& =E\left(e^{\mathbf{t}_{1}^{\prime} \mathbf{Y}_{1}+\mathbf{t}_{2}^{\prime} \mathbf{Y}_{2}}\right)=E\left(e^{\mathbf{t}_{1}^{\prime} \mathbf{Y}_{1}} e^{\mathbf{t}_{2}^{\prime} \mathbf{Y}_{2}}\right) \\
& =E\left(e^{\mathbf{t}_{1}^{\prime} g_{1}\left(\mathbf{X}_{1}\right)} e^{\mathbf{t}_{2}^{\prime} g_{2}\left(\mathbf{X}_{2}\right)}\right) \\
& =\iint e^{\mathbf{t}_{1}^{\prime} g_{1}\left(\mathbf{x}_{1}\right)} e^{\mathbf{t}_{2}^{\prime} g_{2}\left(\mathbf{x}_{2}\right)} f_{\mathbf{X}_{1}\left(\mathbf{x}_{1}\right) f_{\mathbf{X}_{2}}\left(\mathbf{x}_{2}\right) d\left(\mathbf{x}_{1}\right) d\left(\mathbf{x}_{2}\right)} \\
& =M_{g_{1}\left(\mathbf{X}_{1}\right)}\left(\mathbf{t}_{1}\right) M_{g_{2}\left(\mathbf{X}_{2}\right)}\left(\mathbf{t}_{2}\right) \\
& =M_{\mathbf{Y}_{1}\left(\mathbf{t}_{1}\right) M_{\mathbf{Y}_{2}}\left(\mathbf{t}_{2}\right)}
\end{aligned}
$$

So \mathbf{Y}_{1} and \mathbf{Y}_{2} are independent.

Copyright Information

This slide show was prepared by Jerry Brunner, Department of Statistical Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The $\mathrm{IATEX}_{\mathrm{E}}$ source code is available from the course website:
http://www.utstat.toronto.edu/~brunner/oldclass/302f13

[^0]: ${ }^{1}$ See last slide for copyright information.

