General Linear Test with R

When gasoline is pumped into the tank of a car, vapors are vented into the atmosphere. An experiment was conducted to determine whether y , the amount of vapor, can be predicted using the following four variables based on initial conditions of the tank and the dispensed gasoline:

```
x1 = tank temperature (Degrees F)
x2 = gasoline temperature (Degrees F)
x3 = vapor pressure in tank (psi)
x4 = vapor pressure of gasoline (psi)
> gas =
read.table("http://www.utstat.toronto.edu/~brunner/302f13/code_n_data/lecture/vapou
r.data", header=T)
> head(gas)
    y x1 x2 x3 x4
129 33 53 3.32 3.42
2 24 31 36 3.10 3.26
3 26 33 51 3.18 3.18
4 22 37 51 3.39 3.08
5 27 36 54 3.20 3.41
6 21 35 35 3.03 3.03
> cor(gas)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & y & x1 & x2 & x3 & x4 \\
\hline Y & 1.0000000 & 0.8260665 & 0.9093507 & 0.8698845 & 0.9213333 \\
\hline x1 & 0.8260665 & 1.0000000 & 0.7742909 & 0.9554116 & 0.9337690 \\
\hline x2 & 0.9093507 & 0.7742909 & 1.0000000 & 0.7815286 & 0.8374639 \\
\hline x3 & 0.8698845 & 0.9554116 & 0.7815286 & 1.0000000 & 0.9850748 \\
\hline x4 & 0.9213333 & 0.9337690 & 0.8374639 & 0.9850748 & 1.0000000 \\
\hline & \begin{tabular}{l}
fullmodel \\
summary(ful
\end{tabular} & \[
=\operatorname{lm}(y \sim x
\] & \[
+x 2+x 3+x 4
\] & data=gas & \\
\hline
\end{tabular}
Call:
lm(formula = y ~ x1 + x2 + x3 + x4, data = gas)
Residuals:
\begin{tabular}{rrrr} 
Min & \(1 Q\) & Median & 30
\end{tabular}\(\quad\) Max
Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error \(t\) value & \(\operatorname{Pr}(>|t|)\) & \\
(Intercept) & 1.01502 & 1.86131 & 0.545 & 0.59001 \\
x1 & -0.02861 & 0.09060 & -0.316 & 0.75461 & \\
x2 & 0.21582 & 0.06772 & 3.187 & 0.00362 & ** \\
x3 & -4.32005 & 2.85097 & -1.515 & 0.14132 & \\
x4 & 8.97489 & 2.77263 & 3.237 & 0.00319 & **
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.73 on 27 degrees of freedom
Multiple R-squared: 0.9261, Adjusted R-squared: 0.9151
F-statistic: 84.54 on 4 and 27 DF, p-value: 7.249e-15
```

Tank temperature $=x_{1}$ and Vapour pressure in tank $=x_{3}$ are highly correlated, $r=0.96$.
They could be washing each other out. Test them simultaneously.

```
H}\mp@subsup{\textrm{H}}{0}{}:\mp@subsup{\beta}{1}{}=\mp@subsup{\beta}{3}{}=0\quad\mp@subsup{\textrm{H}}{0}{}:\mathbf{C}\boldsymbol{\beta}=\mathbf{t}\quadF=\frac{(\mathbf{C}\widehat{\boldsymbol{\beta}}-\mathbf{t}\mp@subsup{)}{}{\prime}(\mathbf{C}(\mp@subsup{\mathbf{X}}{}{\prime}\mathbf{X}\mp@subsup{)}{}{-1}\mp@subsup{\mathbf{C}}{}{\prime}\mp@subsup{)}{}{-1}(\mathbf{C}\widehat{\boldsymbol{\beta}}-\mathbf{t})}{q\mp@subsup{s}{}{2}
> # Call it L instead of C, because R uses C for contrasts.
> L = rbind(c(0,1,0,0,0),
+ c(0,0,0,1,0))
> V = vcov(fullmodel) # Don't need MSE because it's already in V
> q=dim(L)[1]
> betahat = fullmodel$coefficients
> Cbeta = L %*% betahat; center = solve(L %*% V %*% t(L))
> F = as.numeric( t(Cbeta) %*% center %*% Cbeta ) / q
> dfe = fullmodel$df.residual; dfe
[1] 27
>
> pval = 1-pf(F,q,dfe); pval
[1] 0.1015035
```

Conclusion: Controlling for gasoline temperature and vapour pressure of gasoline, there is no evidence that tank temperature or vapour pressure in tank are related to amount of vapour released from the gas tank.

Get the same test with full versus reduced model.

```
> redmodel = lm(y ~ x2 + x4, data=gas)
> anova(redmodel,fullmodel)
Analysis of Variance Table
Model 1: y ~ x2 + x4
Model 2: y ~ x1 + x2 + x3 + x4
    Res.Df RSS Df Sum of Sq F Pr(>F)
1 29 238.39
2 27 201.23 2 37.159 2.4929 0.1015
RSS = SSE
```

This document is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License: http://creativecommons.org/licenses/by-sa/3.0/deed.en_uS. Use any part of it as you like and share the result freely.

