Sample Questions: Transformations

 STA256 Fall 2019. Copyright information is at the end of the last page.1. Let $X \sim \operatorname{Poisson}\left(\lambda_{1}\right)$ and $Y \sim \operatorname{Poisson}\left(\lambda_{2}\right)$ be independent. Using the convolution formula, find the probability mass function of $Z=X+Y$ and identify it by name.
2. Independently for $i=1, \ldots, n$, let $X_{i} \sim \operatorname{Poisson}\left(\lambda_{i}\right)$, and let $Y_{n}=\sum_{i=1}^{n} X_{i}$. Using the last problem, what is the probability distribution of Y_{n} ?
3. Let $X \sim \operatorname{Binomial}\left(n_{1}, \theta\right)$ and $Y \sim \operatorname{Binomial}\left(n_{2}, \theta\right)$ be independent. Using the convolution formula, find the probability mass function of $Z=X+Y$ and identify it by name.
4. Let X_{1}, \ldots, X_{n} be independent Bernoulli random variables with parameter θ, and let $Y_{n}=\sum_{i=1}^{n} X_{i}$. Using the last problem, what is the probability distribution of Y ?
5. Let X and Y be independent exponential random variables with parameter λ. Using the convolution formula, find the probability density function of $Z=X+Y$ and identify it by name.
6. Let X_{1} and X_{2} be independent standard normal random variables. Find the probability density function of $Y_{1}=X_{1} / X_{2}$.
7. Use the Jacobian method to prove the convolution formula for continuous random variables.
8. Prove $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
9. Show that the normal probability density function integrates to one.

This handout was prepared by Jerry Brunner, Department of Mathematical and Computational Sciences, University of Toronto. It is licensed under a Creative Commons Attribution - ShareAlike 3.0 Unported License. Use any part of it as you like and share the result freely. The ${ }^{\mathrm{A}} \mathrm{TEX}_{E}$ source code is available from the course website:
http://www.utstat.toronto.edu/~ brunner/oldclass/256f19

