% \documentclass[serif]{beamer} % Serif for Computer Modern math font. \documentclass[serif, handout]{beamer} % Handout to ignore pause statements. \hypersetup{colorlinks,linkcolor=,urlcolor=red} \usefonttheme{serif} % Looks like Computer Modern for non-math text -- nice! \setbeamertemplate{navigation symbols}{} % Suppress navigation symbols % \usetheme{Berlin} % Displays sections on top \usetheme{Frankfurt} % Displays section titles on top: Fairly thin but still swallows some material at bottom of crowded slides %\usetheme{Berkeley} \usepackage[english]{babel} \usepackage{amsmath} % for binom \usepackage{amsfonts} % for \mathbb{R} The set of reals % \usepackage{graphicx} % To include pdf files! % \definecolor{links}{HTML}{2A1B81} % \definecolor{links}{red} \setbeamertemplate{footline}[frame number] \mode \title{Moment-generating Functions\footnote{ This slide show is an open-source document. See last slide for copyright information.}} \subtitle{STA 256: Fall 2018} \date{} % To suppress date \begin{document} \begin{frame} \titlepage \end{frame} \begin{frame} \frametitle{Overview} \tableofcontents \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Moment-generating functions} %\framesubtitle{} {\LARGE \begin{displaymath} M_x(t) = E(e^{Xt}) \pause = \left\{ \begin{array}{l} % ll means left left \int_{-\infty}^\infty e^{xt} \, f_x(x) \, dx \\ \\ \sum_x e^{xt} p_x(x) \end{array} \right. % Need that crazy invisible right period! \end{displaymath} \pause } % End size \begin{itemize} \item Moment-generating function may not exist for all $t$. \pause \item It may not exist for any $t$. \pause \item Existence in an interval containing $t=0$ is what matters. \pause \item Moment-generating functions exist for most of the common distributions. \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Properties of moment-generating functions} \pause %\framesubtitle{} \begin{itemize} \item Moment-generating functions can be used to generate moments. \pause A \emph{moment} is a quantity like $E(X)$, $E(X^2)$, etc. \pause % \item To get $E(Y^k)$, differentiate $M_{_Y}(t)$ with respect to $t$. \pause Differentiate $k$ times and set $t=0$. \pause \item[] \item Moment-generating functions correspond uniquely to probability distributions. \pause \item It's sometimes easier to calculate the moment-generating function of $Y=g(X)$ and recognize it, than to obtain the distribution of $Y$ directly. \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Generating Moments} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Generating moments with the moment-generating function: Preparation} \pause %\framesubtitle{Preparation} Theorem: A power series may be differentiated or integrated term by term, and the result is a power series with the same radius of convergence. \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Generating moments with the moment-generating function} \pause %\framesubtitle{} %{\LARGE \begin{eqnarray*} M_{_X}(t) & = & E(e^{Xt}) \\ \pause & = & \int_{-\infty}^\infty e^{xt} \, f_{_X}(x) \, dx \\ \pause & = & \int_{-\infty}^\infty \left( \sum_{k=0}^\infty \frac{(xt)^k}{k!} \right) \, f_{_X}(x) \, dx \\ \pause & = & \sum_{k=0}^\infty \int_{-\infty}^\infty \frac{(xt)^k}{k!} \, f_{_X}(x) \, dx \\ \pause & = & \sum_{k=0}^\infty \left( \int_{-\infty}^\infty x^k \, f_{_X}(x) \, dx \right) \frac{t^k}{k!} \\ \pause & = & \sum_{k=0}^\infty E(X^k) \frac{t^k}{k!} \end{eqnarray*} %} % End size \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Generating moments continued} \pause %\framesubtitle{} {\small \begin{eqnarray*} M_{_X}(t) & = & \sum_{k=0}^\infty E(X^k) \frac{t^k}{k!} \\ \pause & = & 1 + E(X) t + E(X^2) \frac{t^2}{2!} + E(X^3) \frac{t^3}{3!} + \cdots \\ \pause M^\prime_{_X}(t) \pause & = & 0 \pause + E(X) \pause + E(X^2) \frac{2t}{2!} \pause + E(X^3) \frac{3t^2}{3!} + \cdots \\ \pause & = & E(X) + E(X^2) t + E(X^3) \frac{t^2}{2!} + E(X^4) \frac{t^3}{3!} + \cdots \\ \pause M^\prime_{_X}(0) & = & E(X) \\ \pause M^{\prime\prime}_{_X}(t) \pause & = & 0 \pause + E(X^2) \pause + E(X^3) t \pause + E(X^4) \frac{t^2}{2!} + \cdots \\ \pause M^{\prime\prime}_{_X}(0) & = & E(X^2) \\ \end{eqnarray*} \pause And so on. \pause To get $E(Y^k)$, differentiate $M_{_Y}(t)$, $k$ times with respect to $t$, and set $t=0$. } % End size \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Example: Poisson Distribution} \framesubtitle{$p(x) = \frac{e^{-\lambda}\, \lambda^x}{x!}$ for $x = 0, 1, \ldots $} \pause \begin{eqnarray*} M(t) & = & E(e^{Xt}) \\ \pause & = & \sum_{x=0}^\infty e^{xt} \, \frac{e^{-\lambda}\, \lambda^x}{x!} \\ \pause & = & e^{-\lambda}\sum_{x=0}^\infty \frac{\left(\lambda e^t \right)^x}{x!} \\ \pause & = & e^{-\lambda} e^{\lambda e^t} \\ \pause & = & e^{\lambda (e^t-1)} \end{eqnarray*} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Differentiate to get moments for Poisson} \framesubtitle{$M(t)=e^{\lambda (e^t-1)}$} \pause \begin{eqnarray*} M^\prime(t) \pause & = & e^{\lambda (e^t-1)} \cdot \pause \lambda e^t \\ \pause & = & \lambda e^{\lambda (e^t-1)+t} \\ \end{eqnarray*} \pause Set $t=0$ \pause and get $E(X)=\lambda$. \pause \begin{eqnarray*} M^{\prime\prime}(t) & = & \lambda e^{\lambda (e^t-1)+t} \cdot \pause (\lambda e^t+1) \\ \pause & = & e^{\lambda (e^t-1)+t} \cdot (\lambda^2 e^t+\lambda)\\ \end{eqnarray*} \pause Set $t=0$ \pause and get $E(X^2)= \pause \lambda^2+\lambda$. \vspace{3mm} \pause So $Var(X) = E(X^2)=[E(X)]^2 \pause = \lambda^2+\lambda - \lambda^2 \pause = \lambda$ \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Useful properties of moment-generating functions} %\framesubtitle{Use these to find distributions of \emph{functions} of random variables} \begin{itemize} \item $M_{ax}(t) = M_x(at)$ \pause \item $M_{a+x}(t) = e^{at}M_x(t)$ \pause \item If $X$ and $Y$ are independent, $M_{x+y}(t) = M_x(t) \, M_y(t)$ \pause \item[] Extending by induction, \pause \item If $X_1, \ldots, X_n$ are independent, $M_{_{(\sum_{i=1}^n X_i)}}(t) = \prod_{i=1}^n M_{x_i}(t)$. \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \section{Identifying Distributions} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Identifying Distributions using Moment-generating Functions} \pause %\framesubtitle{} \begin{itemize} \item Getting expected values with the MGF can be easier than direct calculation. \pause But not always. \item Moment-generating functions can also be used to identify distributions. \pause \item Calculate the moment-generating function of $Y=g(X)$, \pause and if you recognize the MGF, you have the distribution of $Y$. \pause \item Here's what's happening technically. \pause \item $M_x(t) = \int_{-\infty}^\infty e^{xt} \, f_x(x) \, dx $ \pause so $M_x(t)$ is a function of $F_x(x)$. \pause That is, $M_x(t) = g(F_x(x))$. \pause \item Uniqueness says the function $g$ has an inverse, \pause so that $F_x(x) = g^{-1}(M_x(t))$. \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{The function $M(t)$ is like a fingerprint of the probability distribution.} \pause %\framesubtitle{} \begin{itemize} \item[] $Y \sim N(\mu,\sigma^2)$ if and only if $M_{_Y}(t) = e^{\mu t + \frac{1}{2}\sigma^2t^2}$. \pause \item[] \item[] $Y \sim \chi^2(\nu)$ if and only if $M_{_Y}(t) = (1-2t)^{-\nu/2}$ for $t < \frac{1}{2}$. \pause \end{itemize} \vspace{5mm} Chi-squared is a special Gamma, with $\alpha=\nu/2$ and $\lambda = \frac{1}{2}$. \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Normal: $M(t) = e^{\mu t + \frac{1}{2}\sigma^2t^2}$} \pause %\framesubtitle{} \begin{center} \includegraphics[width=3in]{NormalMGF} \end{center} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Chi-squared: $M(t) = (1-2t)^{-\nu/2}$} \framesubtitle{Chi-squared is a special Gamma, with $\alpha=\nu/2$ and $\lambda= \frac{1}{2}$} \pause \begin{center} \includegraphics[width=3in]{ChisqMGF} \end{center} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Example: Sum of Poissons is Poisson} \pause %\framesubtitle{} Let $X_1, \ldots, X_n$ be independent Poisson($\lambda_i$). \pause Let $Y = \sum_{i=1}^n X_i$. \pause Find the probability distribution of $Y$. \pause Recall Poisson MGF is $e^{\lambda (e^t-1)}$. \pause \begin{eqnarray*} M_y(t) & = & M_{_{(\sum_{i=1}^n X_i)}}(t) \\ \pause & = & \prod_{i=1}^n M_{x_i}(t) \\ \pause & = & \prod_{i=1}^n e^{\lambda_i (e^t-1)} \\ \pause & = & e^{(\sum_{i=1}^n\lambda_i) (e^t-1)} \\ \pause \end{eqnarray*} MGF of Poisson, with $\lambda^\prime = \sum_{i=1}^n\lambda_i$. \pause Therefore, $Y \sim$ Poisson($\sum_{i=1}^n\lambda_i$). \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Copyright Information} This slide show was prepared by \href{http://www.utstat.toronto.edu/~brunner}{Jerry Brunner}, Department of Statistical Sciences, University of Toronto. It is licensed under a \href{http://creativecommons.org/licenses/by-sa/3.0/deed.en_US} {Creative Commons Attribution - ShareAlike 3.0 Unported License}. Use any part of it as you like and share the result freely. The \LaTeX~source code is available from the course website: \vspace{5mm} \href{http://www.utstat.toronto.edu/~brunner/oldclass/256f18} {\small\texttt{http://www.utstat.toronto.edu/$^\sim$brunner/oldclass/256f18}} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \end{document} and $Var(Y) = \sigma^2$ %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{} \pause %\framesubtitle{} \begin{itemize} \item \pause \item \pause \item \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{center} \includegraphics[width=2in]{BivariateNormal} \end{center} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{} %\framesubtitle{} {\LARGE \begin{eqnarray*} m_1 & = & a + b \\ m_2 & = & c + d \end{eqnarray*} } % End size \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{} \pause %\framesubtitle{} \begin{itemize} \item \pause \item \pause \item \end{itemize} \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% # R code for plots of normal MGFs tt = seq(from=-1,to=1,by=0.05) mu = 0; sigsq = 1 zero = exp(mu*tt + 0.5*sigsq*tt^2) mu = 1; one = exp(mu*tt + 0.5*sigsq*tt^2) mu = -1; minusone = exp(mu*tt + 0.5*sigsq*tt^2) x = c(tt,tt,tt); y = c(zero,one,minusone) plot(x,y,pch=' ',xlab='t',ylab = 'M(t)') lines(tt,zero,lty=1) lines(tt,one,lty=2) lines(tt,minusone,lty=3) title("Fingerprints of the normal distribution") # Legend x1 <- c(-0.4,0) ; y1 <- c(4,4) ; lines(x1,y1,lty=1) text(0.25,4,expression(paste(mu," = 0, ",sigma^2," = 1"))) x2 <- c(-0.4,0) ; y2 <- c(3.75,3.75) ; lines(x2,y2,lty=2) text(0.25,3.75,expression(paste(mu," = 1, ",sigma^2," = 1"))) x3 <- c(-0.4,0) ; y3 <- c(3.5,3.5) ; lines(x3,y3,lty=3) text(0.25,3.5,expression(paste(mu," = -1, ",sigma^2," = 1"))) # R code for plots of chi-squared MGFs tt = seq(from=-0.25,to=0.25,by=0.005) nu = 1; one = (1-2*tt)^(-nu/2) nu = 2; two = (1-2*tt)^(-nu/2) nu = 3; three = (1-2*tt)^(-nu/2) x = c(tt,tt,tt); y = c(one,two,three) plot(x,y,pch=' ',xlab='t',ylab = 'M(t)') lines(tt,one,lty=1) lines(tt,two,lty=2) lines(tt,three,lty=3) title("Fingerprints of the chi-squared distribution") # Legend x1 <- c(-0.2,-0.1) ; y1 <- c(2.5,2.5) ; lines(x1,y1,lty=1) text(-0.05,2.5,expression(paste(nu," = 1"))) x2 <- c(-0.2,-0.1) ; y2 <- c(2.3,2.3) ; lines(x2,y2,lty=2) text(-0.05,2.3,expression(paste(nu," = 2"))) x3 <- c(-0.2,-0.1) ; y3 <- c(2.1,2.1) ; lines(x3,y3,lty=3) text(-0.05,2.1,expression(paste(nu," = 3")))