% \documentclass[serif]{beamer} % Serif for Computer Modern math font. \documentclass[serif, handout]{beamer} % Handout to ignore pause statements. \hypersetup{colorlinks,linkcolor=,urlcolor=red} \usefonttheme{serif} % Looks like Computer Modern for non-math text -- nice! \setbeamertemplate{navigation symbols}{} % Suppress navigation symbols % \usetheme{Berlin} % Displays sections on top \usetheme{Frankfurt} % Displays section titles on top: Fairly thin but still swallows some material at bottom of crowded slides %\usetheme{Berkeley} \usepackage[english]{babel} \usepackage{amsmath} % for binom \usepackage{amsfonts} % for \mathbb{R} The set of reals % \usepackage{graphicx} % To include pdf files! % \definecolor{links}{HTML}{2A1B81} % \definecolor{links}{red} \setbeamertemplate{footline}[frame number] \mode \title{Counting Methods for Computing Probabilities\footnote{ This slide show is an open-source document. See last slide for copyright information.}} \subtitle{STA 256: Fall 2018} \date{} % To suppress date \begin{document} \begin{frame} \titlepage \end{frame} \begin{frame} \frametitle{Countable set} %\framesubtitle{} A set is said to be \emph{countable} if it can be placed in one-to-one correspondence with the set of natural numbers $\mathbb{N} = \{1,2,\ldots \}$. \pause \vspace{3mm} If the sample space $\Omega$ is countable and $A \subseteq \Omega$, \pause \begin{displaymath} P(A) = \sum_{\omega \in A} P(\omega\} \end{displaymath} \pause \vspace{3mm} Example: Roll a fair die. What is the probability of an odd number? \pause \begin{displaymath} P(\mbox{Odd}) = \pause P\{1,3,5\} = \pause P\{1\}+P\{3\}+P\{5\} \end{displaymath} \end{frame} \begin{frame} \frametitle{If all outcomes of an experiment are equally likely,} \pause %\framesubtitle{} {\Large \begin{displaymath} P(A) = \frac{\mbox{Number of ways for $A$ to happen}} {\mbox{Total number of outcomes}} \end{displaymath} \pause } % End size \vspace{8mm} Need to count. \end{frame} \begin{frame} \frametitle{Multiplication Principle} \framesubtitle{Also called the Fundamental Principle of Counting} \pause If there are $p$ experiments and the first has $n_1$ outcomes, the second has $n_2$ outcomes, etc., \pause then there are \pause \begin{displaymath} n_1 \times n_2 \times \cdots \times n_p \end{displaymath} outcomes in all. \end{frame} \begin{frame} \frametitle{Sample Question} %\framesubtitle{} If there are nine horses in a race, in how many ways can they finish first, second and third? \pause \begin{displaymath} 9 \times 8 \times 7 = 504 \end{displaymath} \end{frame} \begin{frame} \frametitle{Permutations} \framesubtitle{Ordered subsets} \pause The number of \emph{permutations} (ordered subsets) of $n$ objects taken $r$ at a time is \pause \vspace{4mm} {\Large \begin{eqnarray*} _nP_r & = & n \times (n-1) \times \cdots \times (n-r+1) \\ \pause & = & \frac{n!}{(n-r)!} \end{eqnarray*} } % End size \end{frame} \begin{frame} \frametitle{Combinations} \framesubtitle{Unordered subsets} \pause The number of \emph{combinations} (unordered subsets) of $n$ objects taken $r$ at a time is \pause \vspace{4mm} {\Large \begin{displaymath} \binom{n}{r} = \frac{n!}{r! \, (n-r)!} \end{displaymath} } % End size \end{frame} \begin{frame} \frametitle{Proof of $\binom{n}{r} = \frac{n!}{r! \, (n-r)!}$} \framesubtitle{Part of Proposition B in the text, p.12} \pause Choose an unordered subset of $r$ items from $n$. \pause Then place them in order. \pause By the Multiplication Principle, \pause %{\LARGE \begin{eqnarray*} & & _nP_r = \binom{n}{r} \times r! \\ \pause & \Rightarrow & \frac{n!}{(n-r)!} = \binom{n}{r} \times r! \\ \pause & \Rightarrow & \binom{n}{r} = \frac{n!}{r! \, (n-r)!} \end{eqnarray*} $\blacksquare$ %} % End size \end{frame} \begin{frame} \frametitle{Binomial Theorem} %\framesubtitle{} {\LARGE \begin{displaymath} (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^kb^{n-k} \end{displaymath} } % End size \end{frame} \begin{frame} \frametitle{Multinomial Coefficients} \framesubtitle{Proposition C in the text} The number of ways that $n$ objects can be divided into $r$ subsets with $n_i$ objects in set $i$, $i = 1, \ldots,r$ is \vspace{2mm} \pause {\LARGE \begin{displaymath} \binom{n}{n_1~\cdots~n_r}=\frac{n!}{n_1!~\cdots~n_r!} \end{displaymath} } % End size \end{frame} \begin{frame} \frametitle{Multinomial Theorem} \framesubtitle{Nice to know} {\LARGE \begin{displaymath} (x_1 + \cdots x_r)^n = \sum_{\mathbf{n}} \binom{n}{n_1~\cdots~n_r} x_1^{n_1} \cdots x_r^{n_r} \end{displaymath} } % End size where the sum is over all non-negative integers $n_1, \ldots, n_r$ such that $\sum_{j=1}^r n_j = n$. \end{frame} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \begin{frame} \frametitle{Copyright Information} This slide show was prepared by \href{http://www.utstat.toronto.edu/~brunner}{Jerry Brunner}, Department of Statistical Sciences, University of Toronto. It is licensed under a \href{http://creativecommons.org/licenses/by-sa/3.0/deed.en_US} {Creative Commons Attribution - ShareAlike 3.0 Unported License}. Use any part of it as you like and share the result freely. The \LaTeX~source code is available from the course website: \vspace{5mm} \href{http://www.utstat.toronto.edu/~brunner/oldclass/256f18} {\small\texttt{http://www.utstat.toronto.edu/$^\sim$brunner/oldclass/256f18}} \end{frame} \end{document} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% $ = \{\omega \in \Omega: \}$ \begin{frame} \frametitle{} \pause %\framesubtitle{} \begin{itemize} \item \pause \item \pause \item \end{itemize} \end{frame}