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1This slide show is an open-source document. See last slide for copyright
information.
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Thomas Bayes (1701-1761)
Image from the Wikipedia
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Bayes’ Theorem

Bayes’ Theorem is about conditional probability.

It has statistical applications.
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Conditional Probability

A B

A∩B

P (A|B) =
P (A ∩B)

P (B)
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Multiplication Rule

From P (A|B) = P (A∩B)
P (B) , get P (A ∩B) = P (A|B)P (B).

From P (B|A) = P (B∩A)
P (A) , get P (A ∩B) = P (B|A)P (A)
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Bayes’ Theorem
The most elementary version

A B

A∩B

P (A|B) =
P (A ∩B)

P (B)

=
P (A ∩B)

P (A ∩B) + P (Ac ∩B)

=
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
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Define “events” in terms of random variables
Instead of A, B, etc.

P (Y = y|X = x) =
P (X = x, Y = y)

P (X = x)
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For continuous random variables

We have conditional densities:

fy|x(y|x) =
fxy(x, y)

fx(x)
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There are many versions of Bayes’ Theorem

For discrete random variables,

P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)

=
P (Y = y|X = x)P (X = x)∑
t P (Y = y|X = t)P (X = t)
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For continuous random variables

fx|y(x|y) =
fxy(x, y)

fy(y)

=
fy|x(y|x)fx(x)∫
fy|x(y|t)fx(t) dt
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Compare

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)

P (X = x|Y = y) =
P (Y = y|X = x)P (X = x)∑
t P (Y = y|X = t)P (X = t)

fx|y(x|y) =
fy|x(y|x)fx(x)∫
fy|x(y|t)fx(t) dt
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Philosophy
Bayesian versus Frequentist

What is probability?

Probability is a formal axiomatic system (Thank you Mr.
Kolmogorov).

Of what is probability a model?
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Of what is probability a model?
Two answers

Frequentist: Probability is long-run relative frequency.

Bayesian: Probability is degree of subjective belief.
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Statistical inference
How it works

Adopt a probability model for data X.

Distribution of X depends on a parameter θ.

Use observed value X = x to decide about θ.

Translate the decision into a statement about the process
that generated the data.

Bayesians and Frequentists agree so far, mostly.

The description above is limited to what frequentists can
do.

Bayes methods can generate more specific
recommendations.
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What is parameter?

To the frequentist, it is an unknown constant.

To the Bayesian since we don’t know the value of the
parameter, it’s a random variable.
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Unknown parameters are random variables
To the Bayesian

That’s because probability is subjective belief.

We model our uncertainty with a probability distribution,
π(θ).

π(θ) is called the prior distribution.

Prior because it represents the statistician’s belief about θ
before observing the data.

The distribution of θ after seeing the data is called the
posterior distribution.

The posterior is the conditional distribution of the
parameter given the data.

16 / 45



Probability Philosopy Decision Theory Example Computation

Bayesian Inference

Model is p(x|θ) or f(x|θ).
Prior distribution π(θ) is based on the best available
information.

But yours might be different from mine. It’s subjective.

Use Bayes’ Theorem to obtain the posterior distribution
π(θ|x).

As the notation indicates, π(θ|x) might be the prior for the
next experiment.
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Subjectivity

Subjectivity is the most frequent objection to Bayesian
methods.

The prior distribution influences the conclusions.

Two scientists may arrive at different conclusions from the
same data, based on the same statistical analysis.

The influence of the prior goes to zero as the sample size
increases

For all but the most bone-headed priors.
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Bayes’ Theorem
Continuous case

π(θ|x) =
f (x|θ)π(θ)∫
f (x|t)π(t) dt

∝ f (x|θ)π(θ)
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Once you have the posterior distribution, you can . . .

Give a point estimate of θ. Why not E(θ|X = x)?

Test hypotheses, like H0 : θ ∈ H.

Reject H0 if P (θ ∈ H|X = x) < P (θ /∈ H|X = x).
Why not?

We should be able to do better than “Why not?”
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Decision Theory

Any time you make a decision, you can lose something.

Risk is defined as expected loss.

Goal: Make decisions so as to minimize risk.

Or if you are an optimist, you can maximize expected
utility.
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Decisions

d = d(x) ∈ D

d is a decision.

It is based on the data.

It is an element of a decision space.
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Decision space D

It is the set of possible decisions that might be made based
on the data.

For estimation, D is the parameter space.

For accepting or rejecting a null hypothesis, D consists of 2
points.

Other kinds of kinds of decision are possible, not covered
by frequentist inference.

What kind of chicken feed should the farmer buy?
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Loss function

L = L (d(x), θ) ≥ 0

When X and θ are random, L is a real-valued random variable.
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Risk is Expected Loss
L = L (d(x), θ)

E(L) = E(E[L|X ])

=

∫ (∫
L (d(x), θ) dπ(θ|x)

)
dP (x)

Any decision d(x) that minimizes posterior expected loss
for all x also minimizes overall expected loss (risk).
Such a decision is called a Bayes decision.
This is the theoretical basis for using the posterior
distribution.
We need an example.
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Coffee taste test

A fast food chain is considering a change in the blend of coffee
beans they use to make their coffee. To determine whether their
customers prefer the new blend, the company plans to select a
random sample of n = 100 coffee-drinking customers and ask
them to taste coffee made with the new blend and with the old
blend, in cups marked “A” and “B.” Half the time the new
blend will be in cup A, and half the time it will be in cup B.
Management wants to know if there is a difference in preference
for the two blends.
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Model: The conditional distribution of X given θ

Letting θ denote the probability that a consumer will choose the
new blend, treat the data X1, . . . , Xn as a random sample from
a Bernoulli distribution. That is, independently for i = 1, . . . , n,

p(xi|θ) = θxi(1− θ)1−xi

for xi = 0 or xi = 1, and zero otherwise.

p(x|θ) =

n∏
i=1

θxi(1− θ)1−xi

= θ
∑n

i=1 xi(1− θ)n−
∑n

i=1 xi
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Prior: The Beta distribution

π(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

For 0 < θ < 1, and zero otherwise.

Note α > 0 and β > 0
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Beta prior: π(θ) = Γ(α+β)
Γ(α)Γ(β)θ

α−1(1− θ)β−1

Supported on [0, 1].

E(θ) = α
α+β

V ar(θ) = αβ
(α+β)2(α+β+1)

.

Can assume a variety of shapes depending on α and β.

When α = β = 1, it’s uniform.

Bayes used a Bernoulli model and a uniform prior in his
posthumous paper.
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Posterior distribution

π(θ|x) ∝ p(x|θ) π(θ)

= θ
∑n

i=1 xi(1− θ)n−
∑n

i=1 xi
Γ(α+ β)

Γ(α)Γ(β)
θα−1(1− θ)β−1

∝ θ(α+
∑n

i=1 xi)−1(1− θ)(β+n−
∑n

i=1 xi)−1

Proportional to the density of a Beta(α′, β′), with

α′ = α+
∑n

i=1 xi

β′ = β + n−
∑n

i=1 xi

So that’s it!
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Conjugate Priors

Prior was Beta(α, β).

Posterior is Beta(α′, β′).

Prior and posterior are in the same family of distributions.

The Beta is a conjugate prior for the Bernoulli model.

Posterior was obtained by inspection.

Conjugate priors are very convenient.

There are conjugate priors for many models.

There are also important models for which conjugate priors
do not exist.
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Picture of the posterior

Suppose 60 out of 100 consumers picked the new blend of coffee beans.

Posterior is Beta, with α′ = α+
∑n

i=1 xi = 61 and

β′ = β + n−
∑n

i=1 xi = 41.
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θ|
x)

Posterior Density
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Estimation

Question: How should I estimate θ?

Answer to the question is another question: What is your
loss function?

First, what is the decision space?

D = (0, 1), same as the parameter space.

d ∈ D is a guess about the value of θ.

The loss function is up to you, but surely the more you are
wrong, the more you lose.

How about squared error loss?

L(d, θ) = k(d− θ)2

We can omit the proportionality constant k.
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Minimize expected loss
L(d, θ) = (d− θ)2

Denote E(θ|X = x) by µ. Then

E (L(d, θ)|X = x) = E
(
(d− θ)2|X = x

)
= E

(
(d−µ+ µ− θ)2|X = x

)
= . . .

= E
(
(d− µ)2|X = x

)
+ E

(
(θ − µ)2|X = x

)
= (d− µ)2 + V ar(θ|X = x)

Minimal when d = µ = E(θ|X = x), the posterior mean.

This was general.

The Bayes estimate under squared error loss is the
posterior mean.
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Back to the example
Give the Bayes estimate of θ under squared error loss.

Posterior distribution of θ is Beta, with α′ = α+
∑n

i=1 xi = 61
and β′ = β + n−

∑n
i=1 xi = 41.

> 61/(61+41)

[1] 0.5980392
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Hypothesis Testing
θ > 1

2
means consumers tend to prefer the new blend of coffee.

Test H0 : θ ≤ θ0 versus H1 : θ > θ0.

What is the loss function?

When you are wrong, you lose.

Try zero-one loss.

Loss L(dj , θ)

Decision When θ ≤ θ0 When θ > θ0
d0 : θ ≤ θ0 0 1

d1 : θ > θ0 1 0
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Compare expected loss for d0 and d1

Loss L(dj , θ)

Decision When θ ≤ θ0 When θ > θ0
d0 : θ ≤ θ0 0 1

d1 : θ > θ0 1 0

Note L(d0, θ) = I(θ > θ0) and L(d1, θ) = I(θ ≤ θ0).

E (I(θ > θ0)|X = x) = P (θ > θ0|X = x)

E (I(θ ≤ θ0)|X = x) = P (θ ≤ θ0|X = x)

Choose the smaller posterior probability of being wrong.

Equivalently, reject H0 if P (H0|X = x) < 1
2 .
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Back to the example
Decide between H0 : θ ≤ 1/2 and H1 : θ > 1/2 under zero-one loss.

Posterior distribution of θ is Beta, with α′ = α+
∑n

i=1 xi = 61
and β′ = β + n−

∑n
i=1 xi = 41.

Want P (θ > 1
2 |X = x)

> 1 - pbeta(1/2,61,41) # P(theta > theta0|X=x)

[1] 0.976978
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How much worse is a Type I error?

Loss L(dj , θ)

Decision When θ ≤ θ0 When θ > θ0
d0 : θ ≤ θ0 0 1

d1 : θ > θ0 k 0

To conclude H1, posterior probability must be at least k times
as big as posterior probability of H0.
k = 19 is attractive.

A realistic loss function for the taste test would be more
complicated.
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Computation

Inference will be based on the posterior.

Must be able to calculate E(g(θ)|X = x)

For example, E(L(d, θ)|X = x)

Or at least ∫
L(d, θ)f(x|θ)π(θ) dθ.

If θ is of low dimension, numerical integration usually
works.

For high dimension, it can be tough.
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Monte Carlo Integration to get E(g(θ)|X = x)
Based on simulation from the posterior

Sample θ1, . . . , θm independently from the posterior distribution

and calculate

1

m

m∑
j=1

g(θj)
a.s.→ E(g(θ)|X = x)

By the Law of Large Numbers.

Large-sample confidence interval is helpful.
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Sometimes it’s Hard

If the posterior is a familiar distribution (and you know
what it is), simulating values from the posterior should be
routine.

If the posterior is unknown or very unfamiliar, it’s a
challenge.

42 / 45



Probability Philosopy Decision Theory Example Computation

The Gibbs Sampler
Geman and Geman (1984)

θ = (θ1, . . . , θk) is a random vector with a (posterior) joint
distribution.

It is relatively easy to sample from the conditional
distribution of each component given the others.

Algorithm, say for θ = (θ1, θ2, θ3):
First choose starting values of θ2 and θ3 somehow. Then,

Sample from the conditional distribution of θ1 given θ2 and
θ3. Set θ1 to the resulting number.
Sample from the conditional distribution of θ2 given θ1 and
θ3. Set θ2 to the resulting number.
Sample from the conditional distribution of θ3 given θ1 and
θ2. Set θ3 to the resulting number.

Repeat.
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Output

The Gibbs sampler produces a sequence of random
(θ1, θ2, θ3) vectors.

Each one depends on the past only through the most
recent one.

It’s a Markov process.

Under technical conditions (Ergodicity), it has a stationary
distribution that is the desired (posterior) distribution.

Stationarity is a →∞ concept.

In practice, a “burn in” period is used.

The random vectors are sequentially dependent.

Time series diagnostics may be helpful.

Retain one parameter vector every “n” iterations, and
discard the rest.
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Copyright Information

This slide show was prepared by Jerry Brunner, Department of
Statistical Sciences, University of Toronto. It is licensed under a
Creative Commons Attribution - ShareAlike 3.0 Unported
License. Use any part of it as you like and share the result
freely. The LATEX source code is available from the course
website:

http://www.utstat.toronto.edu/∼brunner/oldclass/2453y15-16
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