Repeated Measures with proc mixed

In a repeated measures research design, also called within-subjects or longitudinal, the dependent variable is measured on more than one occasion for each case (there are n cases). Predictor variables can be measured repeatedly over time, too. Sometimes the subjects experience a different experimental treatment every time the dependent variable is measured. This is typical of laboratory studies. Other times, the variable of interest is just tracked over time. This is typical of longitudinal studies in epidemiology. But in general, you do not expect observations coming from the same individual to be independent. The dependence has to be modeled somehow.

In the world of proc mixed, dependent variables are normally distributed. Observations coming from the same case have a multivariate normal distribution, with the same covariance matrix $\boldsymbol{\Sigma}$ for each case.

Proc mixed allows you to specify various structures for the covariance matrix. Some of these appear on the following page.

Variance Components: type $=\mathrm{vc} \quad \Sigma=\left|\begin{array}{cccc}\sigma_{1}^{2} & 0 & 0 & 0 \\ 0 & \sigma_{2}^{2} & 0 & 0 \\ 0 & 0 & \sigma_{3}^{2} & 0 \\ 0 & 0 & 0 & \sigma_{4}^{2}\end{array}\right|$
Compound Symmetry: type $=\mathrm{cs} \quad \Sigma=\left[\begin{array}{cccc}\sigma^{2}+\sigma_{1} & \sigma_{1} & \sigma_{1} & \sigma_{1} \\ \sigma_{1} & \sigma^{2}+\sigma_{1} & \sigma_{1} & \sigma_{1} \\ \sigma_{1} & \sigma_{1} & \sigma^{2}+\sigma_{1} & \sigma_{1} \\ \sigma_{1} & \sigma_{1} & \sigma_{1} & \sigma^{2}+\sigma_{1}\end{array}\right]$

Unknown: type $=$ un

Banded: type $=$

$$
\Sigma=\left|\begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{5} & 0 & 0 \\
\sigma_{5} & \sigma_{2}^{2} & \sigma_{6} & 0 \\
0 & \sigma_{6} & \sigma_{3}^{2} & \sigma_{7} \\
0 & 0 & \sigma_{7} & \sigma_{4}^{2}
\end{array}\right|
$$

First order autoregressive: type $=\operatorname{ar}(1) \quad \sum=\sigma^{2}\left(\left.\begin{array}{cccc}1 & \rho & \rho^{2} & \rho^{3} \\ \rho & 1 & \rho & \rho^{2} \\ \rho^{2} & \rho & 1 & \rho \\ \rho^{3} & \rho^{2} & \rho & 1\end{array} \right\rvert\,\right.$

$$
\left.\Sigma=\left\lvert\, \begin{array}{cccc}
\sigma_{1}^{2} & \sigma_{1,2} & \sigma_{1,3} & \sigma_{1,4} \\
\sigma_{1,2} & \sigma_{2}^{2} & \sigma_{2,3} & \sigma_{2,4} \\
\sigma_{1,3} & \sigma_{2,3} & \sigma_{3}^{2} & \sigma_{3,4} \\
\sigma_{1,4} & \sigma_{2,4} & \sigma_{3,4} & \sigma_{4}^{2}
\end{array}\right.\right]
$$

There are more, including Toeplitz, banded Toeplitz \& spatial (covariance is a function of Euclidian distance).

In this example done by the Consulting Service in 2005, the dependent variable was hunger. There was a treatment Group, which is a between-subjects factor, and two within-subjects factors. The within-subjects factors are Drink (with values 1, 2 and 3: maybe representing different amounts) and time (values are $0,15,30$ and 60). So hunger was measured for each subject on $4 \times 3=12$ occasions. The original raw data file had a multivariate setup, meaning that it had the standard row-by-column format, with one row of data for each subject. The variables on each row were something like this

Subject Group	
Hunger1	(with Drink=1 and Time=0)
Hunger2	(with Drink=1 and Time=15)
Hunger3	(with Drink=1 and Time=30)
Hunger4	(with Drink=1 and Time=60)
Hunger5	(with Drink=2 and Time=0)
Hunger6	(with Drink=2 and Time=15)
Hunger7	(with Drink=2 and Time=30)
Hunger8	(with Drink=2 and Time=60)
Hunger9	(with Drink=3 and Time=0)
Hunger10	(with Drink=3 and Time=15)
Hunger11	(with Drink=3 and Time=30)
Hunger12	(with Drink=3 and Time=60)

Unfortunately, proc glm requires a setup like this (though of course more than one line of data per case is okay), but proc mixed can't use it. So the raw data were read into a SAS data set, and then a new SAS data set was created in which each observation of the dependent variable resides on a separate case. Yes, there are $12 n$ cases. I'll show you how it was done at the end. The new data set has a structure shown on the following page.

The data set hungermixed looks like this:

Subj	Group	Drink	Time	Hunger
1	1	1	0	6.3
1	1	1	15	4.2
1	1	1	30	7.7
1	1	1	60	2.8
1	1	2	0	4.2
1	1	2	15	6.0
1	1	2	30	7.1
1	1	2	60	8.3
1	1	3	0	9.5
1	1	3	15	4.7
1	1	3	30	3.3
1	1	3	60	5.5
2	1	1	0	6.3
2	1	1	15	7.8
2	1	1	30	5.9
2	1	1	60	8.1
2	1	2	0	9.0
2	1	2	15	1.3
2	1	2	30	2.6
2	1	2	60	4.5
2	1	3	0	6.9
2	1	3	15	2.7
2	1	3	30	7.5
2	1	3	60	8.8
. .				
40	2	1	0	4.6
40	2	1	15	3.3
40	2	1	30	7.8
40	2	1	60	8.1
40	2	2	0	2.0
40	2	2	15	1.7
40	2	2	30	4.4
40	2	2	60	8.8
40	2	3	0	3.2
40	2	3	15	5.7
40	2	3	30	6.5
40	2	3	60	9.0

Here's the code:
proc mixed data=hungermixed;

> class group subj drink time; model hunger= group|drink|time / outp=resids; repeated/type=ar(1) sub=subj;

Here's how the data set hungermixed was created. First, the original data were read into a data set called hungerglm. Then, still in the data step,
data hungermixed;
set hungerglm;
drink = 1; time = 0; hunger = hunger1; output;
drink $=1$; time $=15$; hunger = hunger2; output;
drink $=1$; time $=30$; hunger $=$ hunger3; output;
drink $=1$; time $=60$; hunger $=$ hunger 4 ; output;
drink $=2$; time $=0$; hunger $=$ hunger5; output;
drink $=2$; time $=15$; hunger $=$ hunger6; output;
drink $=2$; time $=30$; hunger $=$ hunger7; output;
drink $=2$; time $=60$; hunger $=$ hunger8; output;
drink $=3$; time $=0$; hunger $=$ hunger9; output;
drink $=3$; time $=15$; hunger $=$ hunger10; output;
drink $=3$; time $=30$; hunger $=$ hunger11; output;
drink $=3$; time $=60$; hunger $=$ hunger12; output;
drop hunger1-hunger12;
/* I'm dropping the old variables because I don't need them anymore. */

Noise

Here is part of noise.dat

```
    1 2.5 1 1 2 1 1 4 4 50.7
    1 2.5 1 2 2 2 1 27.4
    1 2.5 1 1 2 3 3 3 39.1
    1 2.5 1 2 2 4 2 37.5
    1 2.5 1 2 2 5 5 5 35.4
    2 1.9 1 1 2 1 1 3 40.3
    2 1.9 1 1 2 2 1 1 30.1
    2 1.9 1 1 2 3 3 5 38.9
    2 1.9 1 1 2 4 2 31.9
    2 1.9 1 1 2 5 5 4 31.6
/**************** snoise.sas ***********************/
options linesize=79 noovp pagesize=250 formdlim='_';
title 'Repeated measures on Noise data: Try Spatial Autocorrelation';
proc format; value sexfmt 0 = 'Male' 1 = 'Female' ;
data loud;
    infile 'noise.dat'; /* Univariate data read */
    input ident interest sex age noise time discrim ;
    format sex sexfmt.;
    label interest = 'Interest in topic (politics)'
        time = 'Order of presenting noise level';
/* As of SAS version 9.1, eight spatial autocorrelation structures were
available. The one that reduces to ar(1) is called spatial power. The last
argument in parentheses is a LIST of variables representing the spatial
co-ordinates. Spatial autocorrelation dies out exponentially with Euclidean
distance. */
```

```
proc mixed;
```

proc mixed;
title2 'Spatial power on order = ar(1) on actual time';
title2 'Spatial power on order = ar(1) on actual time';
class age sex noise;
class age sex noise;
model discrim = age|sex|noise;
model discrim = age|sex|noise;
repeated / type = sp(pow)(time) subject = ident r;
repeated / type = sp(pow)(time) subject = ident r;
/* Note: This is very promising for unequally spaced repeated measures data,
/* Note: This is very promising for unequally spaced repeated measures data,
too! */

```
    too! */
```


Pliner's Eating Study

O.K., remember the analysis you were going to do for us-a repeated measures with different covariates for the two different occasions. Well, here's a dataset.

So, here's the study. We're interested in the extent to which people conform in terms of amount eaten to the behavior of a confederate who is pre-programmed to eat a lot or a little. Actually, we already know that that has a huge effect on how much people eat. People eat a lot with the big eater and a little with the small eater. So, here's the spin. What if you eat with a model in Session 1 and then a day or so later you eat in the same situation alone--without a model? Will the "norm" established in Session 1 affect people's behavior in Session 2-i.e., will they internalize the norm? Now, here's an additional spin. What if people eat alone in Session 1 and maybe establish their own "norm." If you then put them with a big- or small-eating confederate in Session 2, will they be immune to the confederate's norm because they have already established their own? In other words, for some S s the sessions occur in an alone-confederate order and for others, the sessions occur in a confederatealone order. P.S. if this sounds like the old Sherif study, it's not a co-incidence.

Basically, we've already analyzed the data and we find more or less that a) the norm established in Session 1 carries over to Session 2, even in the absence of the confederate, and b) eating alone in Session 1 doesn't make you immune to the effect of the confederate in Session 2.

One slight annoyance is that there were some differences (nearly significant) between conditions in terms of how "full" Ss said they were before the sessions began and in terms of the number of hours of food deprivation prior to coming to the sessions. So, that's what we want to use as covariates-with each session having as its covariate the person's particular level of fullness or deprivation for that session. Is this clear?

So, I'm including a dataset (an Excel file) for you with the relevant variables as follows:
cdnOrder: the order in which the sessions occurred (0 = alone-confederate; 1 = confederate-alone)
cdnNorm: whether in the confed condition, the confed ate a little or a lot ($0=$ a little; $1=$ a lot)
amtEatC: amount eaten in the session in which the confederate was present
amtEatA: amount eaten in the session in which the subject ate alone
fullc: rated fullness in the session in which the confederate was present
fullA: rated fullness in the session in which the subject ate alone
deptimeC: hours of food deprivation prior to the session in which the confederate was present
deptimeA: hours of food deprivation prior to the session in which the subject ate alone

So, basically, we're talking about split plot analyses with cdnOrder and cdnNorm as between-subjects independent variables and confederate/alone as the within-subjects variable (amtEatC and amtEatA as the dvs) and fullC/fullA as the covariates.

And the same thing with deptimeC/deptimeA as covariates.
Does this all make sense? Let me know if it doesn't.

Patty

```
/dos/brunner/consult/pliner > less RepeatPliner.data
ID,cdnNorm,cdnOrder,ResEater,amtEatC,amtEatA, fullc,fulla,deptimec,deptimea
8,0.0,0.0,1.0,16.00,11.00,2.00,4.00,2.30,4.30
102,0.0,0.0,1.0,12.00,12.00,1.00,1.00,17.25,5.25
106,0.0,0.0,2.0,12.00,13.00,1.00,1.00,2.90,3.40
12,0.0,0.0,1.0,11.00,11.00,1.00,1.00,4.75,7.25
14,0.0,0.0,1.0,10.00,7.00,1.00,1.00,18.12,5.12
/* eatrepeat.sas */
options linesize=79 pagesize=500 noovp formdlim='_';
title 'Social facilitation in eating: ANCOVA with time-varying covariates';
proc format;
    value ofmt 0 = 'AloneConfederate' 1 = 'ConfederateAlone';
    value amtfmt 0 = 'A little' 1 = 'A lot';
data hungry;
    infile 'RepeatPliner.data' firstobs=2 delimiter=',';
    input ID cdnNorm cdnOrder ResEater amtEatC amtEatA fullC fullA deptimeC
            deptimeA;
    label
            cdnOrder = 'Order'
            cdnNorm = 'Amount eaten by Confederate'
            amtEatC = 'Amount eaten with confederate present'
            amtEatA = 'Amount eaten with confederate absent'
            fullC = 'Rated fullness before eating, confederate present'
            fullA = 'Rated fullness before eating, confederate absent'
            deptimeC = 'Deprivation time, confederate present'
            deptimeA = 'Deprivation time, confederate absent';
        format cdnOrder ofmt.;
        format cdnNorm amtfmt.;
proc means;
    title2 'Describe Quantitative Variables';
    var amtEatC amtEatA fullc fulla deptimec deptimea;
proc freq;
    title2 'Frequency distributions and crosstabs';
    tables cdnOrder * (cdnNorm ResEater) / norow nocol nopercent;
    tables cdnNorm*ResEater / norow nocol nopercent;
proc freq;
    tables fullc fulla;
```

```
data fressen; /* Separate cases for confederate present, absent */
    set hungry;
    confed = 'Present';
        amtEat = amtEatC; full = fullC; deptime = deptimeC; output;
    confed = 'Absent';
            amtEat = amtEatA; full = fullA; deptime = deptimeA; output;
    keep ID cdnNorm cdnOrder ResEater confed amtEat full deptime;
    label
            cdnOrder = 'Order'
            cdnNorm = 'Amount eaten by Confederate'
            amtEat = 'Amount eaten'
            full = 'Rated fullness before eating'
            deptime = 'Food Deprivation time';
    format cdnOrder ofmt.;
    format cdnNorm amtfmt.;
proc print;
proc corr;
    var deptime full amtEat;
proc mixed;
    title2 'Covariates: Deprivation time and rated fullness';
    class cdnOrder cdnNorm confed;
    model amtEat = deptime full cdnOrder|cdnNorm|confed;
    repeated / type=un subject=id r;
    lsmeans cdnOrder|cdnNorm|confed;
proc mixed;
    title2 'Covariate: Rated fullness';
    class cdnOrder cdnNorm confed;
    model amtEat = full cdnOrder|cdnNorm|confed;
    repeated / type=un subject=id r;
    lsmeans cdnOrder|cdnNorm|confed;
proc mixed;
    title2 'Covariate: Deprivation time';
    class cdnOrder cdnNorm confed;
    model amtEat = deptime cdnOrder|cdnNorm|confed;
    repeated / type=un subject=id r;
    lsmeans cdnOrder|cdnNorm|confed;
```

Now just part of the list file: Just the proc mixed output for covariate $=$ fullness

```
Social facilitation in eating: ANCOVA with time-varying covariates

The Mixed Procedure

Model Information
\begin{tabular}{ll} 
Data Set & WORK.FRESSEN \\
Dependent Variable & amtEat \\
Covariance Structure & Unstructured \\
Subject Effect & ID \\
Estimation Method & REML \\
Residual Variance Method & None \\
Fixed Effects SE Method & Model-Based \\
Degrees of Freedom Method & Between-Within
\end{tabular}

Class Level Information
\begin{tabular}{lrl} 
Class & Levels & Values \\
cdnOrder & 2 & \begin{tabular}{l} 
AloneConfederate \\
ConfederateAlone
\end{tabular} \\
cdnNorm & 2 & \begin{tabular}{l} 
A little A lot \\
confed
\end{tabular} \\
& 2 & Absent Present
\end{tabular}
\begin{tabular}{lr}
\multicolumn{2}{c}{ Dimensions } \\
Covariance Parameters & 3 \\
Columns in X & 28 \\
Columns in Z & 0 \\
Subjects & 74 \\
Max Obs Per Subject & 2
\end{tabular}

Number of Observations
\begin{tabular}{lr} 
Number of Observations Read & 148 \\
Number of Observations Used & 148 \\
Number of Observations Not Used & 0
\end{tabular}
\begin{tabular}{rrrr} 
& \multicolumn{2}{c}{ Iteration History } \\
Iteration & Evaluations & -2 Res Log Like & Criterion \\
0 & & & \\
1 & 2 & 874.01315426 & 0.00000004 \\
2 & 1 & 818.31545055 & 0.00000000
\end{tabular}

Convergence criteria met.


Null Model Likelihood Ratio Test
\begin{tabular}{rrr} 
DF & Chi-Square & Pr \(>\) ChiSq \\
2 & 55.70 & \(<.0001\)
\end{tabular}

Type 3 Tests of Fixed Effects
\begin{tabular}{lcrrr} 
& \begin{tabular}{c} 
Num \\
DF
\end{tabular} & \begin{tabular}{c} 
Den \\
DF
\end{tabular} & F Value & Pr \(>\) F \\
Effect & & & & \\
full & 1 & 70 & 4.36 & 0.0404 \\
cdnOrder & 1 & 70 & 0.01 & 0.9386 \\
cdnNorm & 1 & 70 & 10.39 & 0.0019 \\
cdnOrder*cdnNorm & 1 & 70 & 0.42 & 0.5206 \\
confed & 1 & 70 & 4.99 & 0.0286 \\
cdnOrder*confed & 1 & 70 & 5.60 & 0.0208 \\
cdnNorm*Confed & 1 & 70 & 14.40 & 0.0003 \\
cdnOrd*cdnNor*Confed & 1 & 70 & 2.04 & 0.1578
\end{tabular}
\begin{tabular}{llllr} 
Effect & confed & Order & Confederate & Estimate \\
& & & & \\
cdnOrder & & AloneConfederate & & 9.7728 \\
cdnOrder & & ConfederateAlone & & 9.8581 \\
cdnNorm & & A little & 8.0165 \\
cdnNorm & & A lot & 11.6143 \\
cdnOrder*cdnNorm & & AloneConfederate & A little & 8.3307 \\
cdnOrder*cdnNorm & & ConfederateAlone & A little & 11.2148 \\
cdnOrder*cdnNorm & & ConfederateAlone & A lot & 7.7024 \\
cdnOrder*cdnNorm & & & & 12.0139 \\
confed & & & 10.2993 \\
confed & & & 9.3316 \\
cdnOrder*confed & Absent & & 9.7550 \\
cdnOrder*confed & Present & AloneConfederate & & 9.7905 \\
cdnOrder*confed & Absent & ConfederateAlone & & 10.8436 \\
cdnOrder*confed & Present & ConfederateAlone & & 8.8726 \\
cdnNorm*confed & Absent & & A little & 9.3153 \\
cdnNorm*confed & Present & & A little & 6.7177 \\
cdnNorm*confed & Absent & & A lot & 11.2833 \\
cdnNorm*confed & Present & & 11.9454 \\
cdnOrd*cdnNor*confed & Absent & AloneConfederate & A little & 9.4318 \\
cdnOrd*cdnNor*confed & Present & AloneConfederate & A little & 7.2295 \\
cdnOrd*cdnNor*confed & Absent & AloneConfederate & A lot & 10.0781 \\
cdnOrd*cdnNor*confed & Present & AloneConfederate & A lot & 12.3515 \\
cdnOrd*cdnNor*confed & Absent & ConfederateAlone & A little & 9.1988 \\
cdnOrd*cdnNor*confed & Present & ConfederateAlone & A little & 6.2059 \\
cdnOrd*cdnNor*confed & Absent & ConfederateAlone & A lot & 12.4884 \\
cdnOrd*cdnNor*confed & Present & ConfederateAlone & A lot & 11.5394
\end{tabular}

Least Squares Means
\begin{tabular}{|c|c|c|c|c|c|}
\hline Effect & confed & Order & Confederate & Error & DF \\
\hline cdnOrder & & AloneConfederate & & 0.7907 & 70 \\
\hline cdnOrder & & ConfederateAlone & & 0.7694 & 70 \\
\hline cdnNorm & & & A little & 0.7859 & 70 \\
\hline cdnNorm & & & A lot & 0.7832 & 70 \\
\hline cdnOrder*cdnNorm & & AloneConfederate & A little & 1.1567 & 70 \\
\hline cdnOrder*cdnNorm & & AloneConfederate & A lot & 1.0915 & 70 \\
\hline cdnOrder*cdnNorm & & ConfederateAlone & A little & 1.0596 & 70 \\
\hline cdnOrder*cdnNorm & & ConfederateAlone & A lot & 1.1178 & 70 \\
\hline confed & Absent & & & 0.6060 & 70 \\
\hline confed & Present & & & 0.5786 & 70 \\
\hline cdnOrder*confed & Absent & AloneConfederate & & 0.8682 & 70 \\
\hline cdnOrder*confed & Present & AloneConfederate & & 0.8277 & 70 \\
\hline cdnOrder*confed & Absent & ConfederateAlone & & 0.8435 & 70 \\
\hline cdnOrder*confed & Present & ConfederateAlone & & 0.8069 & 70 \\
\hline cdnNorm*confed & Absent & & A little & 0.8716 & 70 \\
\hline cdnNorm*confed & Present & & A little & 0.8175 & 70 \\
\hline cdnNorm*confed & Absent & & A lot & 0.8565 & 70 \\
\hline cdnNorm*confed & Present & & A lot & 0.8202 & 70 \\
\hline
\end{tabular}
cdnOrd*cdnNor*confed
cdnOrd*cdnNor*confed
cdnOrd*cdnNor*confed
cdnOrd*cdnNor*confed
cdnOrd*cdnNor*confed
cdnOrd*cdnNor*confed
cdnOrd*cdnNor*confed
cdnOrd*cdnNor*confed
\begin{tabular}{lllll} 
Absent & AloneConfederate & A little & 1.2802 & 70 \\
Present & AloneConfederate & A little & 1.2026 & 70 \\
Absent & AloneConfederate & A lot & 1.1958 & 70 \\
Present & AloneConfederate & A lot & 1.1410 & 70 \\
Absent & ConfederateAlone & A little & 1.1641 & 70 \\
Present & ConfederateAlone & A little & 1.1083 & 70 \\
Absent & ConfederateAlone & A lot & 1.2234 & 70 \\
Present & ConfederateAlone & A lot & 1.1713 & 70
\end{tabular}

Least Squares Means
\begin{tabular}{|c|c|c|}
\hline Effect & confed & Order \\
\hline cdnOrder & & AloneConfederate \\
\hline cdnOrder & & ConfederateAlone \\
\hline cdnNorm & & \\
\hline cdnNorm & & \\
\hline cdnOrder*cdnNorm & & AloneConfederate \\
\hline cdnOrder*cdnNorm & & AloneConfederate \\
\hline cdnOrder*cdnNorm & & ConfederateAlone \\
\hline cdnOrder*cdnNorm & & ConfederateAlone \\
\hline confed & Absent & \\
\hline confed & Present & \\
\hline cdnOrder*confed & Absent & AloneConfederate \\
\hline cdnOrder*confed & Present & AloneConfederate \\
\hline cdnOrder*confed & Absent & ConfederateAlone \\
\hline cdnOrder*confed & Present & ConfederateAlone \\
\hline cdnNorm*confed & Absent & \\
\hline cdnNorm*confed & Present & \\
\hline cdnNorm*confed & Absent & \\
\hline cdnNorm*confed & Present & \\
\hline cdnOrd*cdnNor*confed & Absent & AloneConfederate \\
\hline cdnOrd*cdnNor*confed & Present & AloneConfederate \\
\hline cdnOrd*cdnNor*confed & Absent & AloneConfederate \\
\hline cdnOrd*cdnNor*confed & Present & AloneConfederate \\
\hline cdnOrd*cdnNor*confed & Absent & ConfederateAlone \\
\hline cdnOrd*cdnNor*confed & Present & ConfederateAlone \\
\hline cdnOrd*cdnNor*confed & Absent & ConfederateAlone \\
\hline cdnOrd*cdnNor*confed & Present & ConfederateAlon \\
\hline
\end{tabular}
\begin{tabular}{lrr}
\begin{tabular}{l} 
Amount \\
eaten by \\
Confederate
\end{tabular} & & \\
& & \\
& & \\
& 12.36 & \(<.0001\) \\
A little & 12.81 & \(<.0001\) \\
A lot & 10.20 & \(<.0001\) \\
A little & 14.83 & \(<.0001\) \\
A lot & 7.20 & \(<.0001\) \\
A little & 10.27 & \(<.0001\) \\
A lot & 7.27 & \(<.0001\) \\
& & 10.75 \\
& 16.99 & \(<.0001\) \\
& 16.13 & \(<.0001\) \\
& 11.24 & \(<.0001\) \\
& 11.83 & \(<.0001\) \\
& 12.86 & \(<.0001\) \\
A little & 11.00 & \(<.0001\) \\
A little & 10.69 & \(<.0001\) \\
A lot & 8.22 & \(<.0001\) \\
A lot & 13.17 & \(<.0001\) \\
A little & 14.56 & \(<.0001\) \\
A little & 7.37 & \(<.0001\) \\
A lot & 6.01 & \(<.0001\) \\
A lot & 8.43 & \(<.0001\) \\
A little & 10.83 & \(<.0001\) \\
A little & 7.90 & \(<.0001\) \\
A lot & 5.60 & \(<.0001\) \\
A lot & 10.21 & \(<.0001\) \\
& 9.85 & \(<.0001\)
\end{tabular}```

