Some Power Examples

Consider the usual linear model $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}$, where \mathbf{X} is nxr and $\boldsymbol{\beta}$ is rx1.
When $\mathrm{H}_{0}: \mathbf{C} \boldsymbol{\beta}=\mathbf{h}$ is false (\mathbf{C} is qxr with linearly independent rows), the F statistic has a non-central F distribution with q and $\mathrm{n}-\mathrm{r}$ degrees of freedom, and non-centrality parameter

$$
\phi=\frac{(\mathbf{C} \boldsymbol{\beta}-\mathbf{h})^{\prime}\left(\mathbf{C}\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{C}^{\prime}\right)^{-1}(\mathbf{C} \boldsymbol{\beta}-\mathbf{h})}{\sigma^{2}} .
$$

For a one-factor design, this may be written as

$$
\phi=n \frac{\sum_{k=1}^{r} \frac{n_{k}}{n}\left(\mu_{k}-\mu_{.}\right)^{2}}{\sigma^{2}}=n \frac{\sum_{k=1}^{r} f_{k}\left(\mu_{k}-\mu_{.}\right)^{2}}{\sigma^{2}}
$$

Suppose we have four treatments, and that the four population treatment means are equally spaced, onequarter of a standard deviation apart. We'd like to be able to detect the differences among treatment means with probability 0.80 , using the conventional significance level of $\alpha=0.05$. We'll use equal sample sizes. Let

Non-centrality parameter $=$ Sample size x Effect size

Without loss of generality, we'll let the four population treatment means be $0,0.25,0.50$ and 0.75 . Using R as a calculator, and remembering that the var function divides by the number of observations minus one, we'll calculate the effect size as
> 3 * var $(c(0, .25, .5, .75)) / 4$
[1] 0.078125

The program fpow2.sas uses put statements to write on the log file.

```
***************** fpow2.sas ****************************************************
options linesize = 79 pagesize = 100 noovp formdlim='-'; /* */
data fpower; /* Replace alpha, q, r, effsize and wantpow below */
    alpha = 0.05; /* Signif. level for testing H0: C Beta = h */
    q = 3; /* Numerator df = # rows in C matrix */
    r = 4; /* There are r beta parameters */
    effsize = 0.078125; /* Effect size is ncp/n */
    wantpow = .80; /* Find n to yield this power */
    power = 0; n = r+2; oneminus = 1-alpha; /* Initializing ... */
/*****************************************************************************************)
    do until (power >= wantpow);
        n = n+1 ;
        ncp = n * effsize;
        df2 = n-r;
        power = 1-probf(finv(oneminus,q,df2),q,df2,ncp);
    end;
    put ' ';
    put ' ***************************************************************';
    put ' With ' r ' beta parameters, testing H0 of ' q ' linear';
    put ' restrictions on the betas and an effect size of ' effsize ',';
    put ' A sample size of ' n 'is needed to have probability ' ;
    put ' ' wantpow ' of rejecting HO at significance level alpha = ' alpha;
    put ' ***************************************************************';
    put ' ';
    put ' ';
```

The log file includes

```
*******************************************************************
```

With 4 beta parameters, testing H0 of 3 linear.
restrictions on the betas and an effect size of 0.078125 ,
A sample size of 144 is needed to have probability
0.8 of rejecting H0 at significance level alpha $=0.05$

Now do the same thing with R

```
fpow2 <- function(r,q,effsize,wantpow=0.80,alpha=0.05)
#############################################################################
# Power for the general multiple regression model, testing H0: C Beta = h #
# r is the number of beta parameters #
# q Number rows in the C matrix = numerator df #
# effsize is ncp/n, a squared distance between C Beta and h #
# wantpow is the desired power, default = 0.80 #
# alpha is the significance level, default = 0.05 #
#############################################################################
    {
    pow <- 0 ; nn <- r+1 ; oneminus <- 1 - alpha
    while(pow < wantpow)
            {
            nn <- nn+1
            phi <- nn * effsize
            ddf <- nn-r
            pow <- 1 - pf(qf(oneminus,q,ddf),q,ddf,phi)
            }#End while
    fpow2 <- nn
    fpow2 # Returns needed n
    } # End of function fpow2
```

One may paste this function definition into the R window. Then,

```
> fpow2(r=4,q=3,effsize=0.078125)
```

[1] 144

