ANSWERS TO QUIZ 4

1. (a) $\hat{p}=\frac{257}{484}$
(b) 99% CI for $p=\hat{p} \pm 2.576 \sqrt{\frac{\hat{p} \hat{q}}{n}}$
(Note: ok if used $z_{0.005}=2.575$)

$$
\begin{aligned}
& =\frac{257}{484} \pm 2.576 \sqrt{\frac{\left(\frac{257}{484}\right)\left(\frac{227}{44}\right)}{484}} \\
& =0.5310 \pm 0.0584 \\
& =(0.4726,0.5894)
\end{aligned}
$$

(c) We are 99% sure that the population proportion of Ontario consumers who, if asked the survey question, would say they are optimistic about the economy falls between 0.4726 and 0.5894 .

Minitab

Stat \rightarrow Basic Statistics $\rightarrow 1$ Proportion... \rightarrow Summarized data
Number of trials: 484
Number of successes: 257
\rightarrow Options... \rightarrow Confidence level: 99.0
\rightarrow Check: Use test and interval based on normal distribution $\rightarrow \mathrm{OK} \rightarrow \mathrm{OK}$

Test and Cl for One Proportion

Test of $p=0.5$ vs p not $=0.5$

Sample	X	N	Sample p	$99.0 \% \mathrm{CI}$	Z-Value	P-Value
1	257	484	0.530992	$(0.472563,0.589421)$	1.36	0.173

Ignore results for test.
2. (a) $\sum x=18.58, n=15$

$$
\bar{x}=\frac{\sum x}{n}=\frac{18.58}{15}=1.24
$$

(b) $\sum x^{2}=23.5368$

$$
s=\sqrt{\frac{\sum x^{2}-\frac{\left(\sum x\right)^{2}}{n}}{n-1}}=\sqrt{\frac{23.5368-\frac{18.58^{2}}{15}}{14}}=0.193164
$$

(c) $99 \% \mathrm{CI}$ for $\mu=\bar{x} \pm t_{.005} \frac{s}{\sqrt{n}}$

$$
\begin{aligned}
& =1.24 \pm 2.977 \frac{0.193164}{\sqrt{15}} \\
& =1.24 \pm 0.15 \\
& =(1.09,1.39) \text { millions of characters }
\end{aligned}
$$

(d) We are 99% confident that the mean number of characters printed before failure, for this particular type of printer, is somewhere between 1.09 and 1.39 millions of characters.

Minitab

Store data in C1 and name C1 'characters'.
Stat \rightarrow Basic Statistics \rightarrow 1-Sample $\mathrm{t} . . . \rightarrow$ Variables: characters \rightarrow Options... \rightarrow Confidence level: $99.0 \rightarrow$ OK \rightarrow OK

One-Sample T: characters

Variable	N	Mean	StDev	SE Mean	99.0% CI	
characters	15	1.2387	0.1932	0.0499	$(1.0902,1.3871)$	

3. (a) H_{0} : The insurance analyst's suspicion is false.
(b) $H_{0}: p \geq 0.40$
(c) H_{a} : The insurance analyst's suspicion is true.
(d) $H_{a}: p<0.40$
4. (a) H_{0} : Bottles of ketchup are neither underfilled nor overfilled.
(b) $H_{0}: \mu=500$
(c) H_{a} : Bottles of ketchup are either underfilled or overfilled.
(d) $H_{a}: \mu \neq 500$
