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Abstract
Four methods for selecting sample size are described: the Classical PowerMethod,

the Sample Variation Method, the Population Variation Method, and the Dummy
PopulationMethod. The Classical PowerMethod, the Population VariationMethod,
and the Dummy Population Method are variants of Power analysis; the Sample
Variation method is something else.

The discussion of the Classical Power Method treats the case of fixed-effects
multiple regression in considerable detail, and both the Sample Variation Method
and the Population Variation Method are limited to this important special case.
The Dummy Population Method is a way to do power analysis by simulation in
situations where the usual parametric assumptions are not satisfied, or are too
difficult for the practitioner to think about. It is the most general of the methods
discussed here, but it also requires more effort because it is computer-intensive.
Computed examples of all the methods are provided, with SAS and S code.

1 Introduction

The purpose of this technical report is to describe four related methods for choosing
sample size before data are collected — the classical power method, the sample varia-
tion method, the population variation method and the dummy population method. The
classical power method applies to almost any statistical test. After presenting general
principles and giving an example of calculating power by simulation, the discussion fo-
cuses on the important special case of linear models with i.i.d. normal errors, including
multiple regression and the factorial analysis of variance and covariance.
In practice, the classical power method is often difficult to apply, because power is the

probability of rejecting the null hypothesis as a function of the true parameter values. The
classical power method is based on calculating such a probability for some particular set of
parameter values deemed scientifically meaningful by a scientist or subject-matter expert,
and then, for that configuration of parameter values, adjusting the sample size until an
acceptably high probability of rejecting the null hypothesis is achieved. Perhaps because
scientists tend not to think in terms of the parameters of statistical models, the process
tends to break down — even in consulting situations, where expert advice is available.
The sample variation method, the population variation method and the dummy pop-

ulation method are all attempts to avoid the problem of specifying parameter values. The
sample variation method and the population variation method apply only to the nor-
mal linear model, while the dummy population method is more general. It is also more
computer-intensive, and usually requires a bit of custom programming.
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Throughout, it will be assumed that the person designing the study is a scientist who
will only be allowed to discuss results if a null hypothesis is rejected at some conventional
significance level such as α = 0.05 or α = 0.01. Thus, the objective is to design the
study be designed so that scientifically interesting effects can be detected as statistically
significant.
Two important problems are deliberately excluded from this discussion. One is choos-

ing sample size so that a confidence interval will have a desired width. The main practical
example is the estimation of a percentage or proportion when sampling from a finite pop-
ulation under various sampling plans, like stratified random sampling or cluster sampling.
A good introductory reference is Sharon Lohr’s Sampling: Design and analysis [2].
The second problem not discussed here is the estimation of statistical power after data

have already been collected. This will be treated in a separate document. For now, it’s
enough to say watch out ! Estimates of power can be quite inaccurate. It is an excellent
example of why you should beware of point estimates that are not accompanied by some
margin of probable error.
This report does not contain anything really new; everything in it is well known,

in some sense. Classical power analysis makes an appearance in most treatments of
experimental design – for example [3]. But examples are typically limited to the one-
way analysis of variance, and the treatment tends to be superficial. Cohen’s Statistical
power analysis for the behavioral sciences [1] contains what I call the Population Variation
Method. Cohen just calls it “statistical power analysis.” For most psychologists, Cohen’s
book is the Bible of power analysis. They have no idea how unusual it is from the
standpoint of a professional statistician. As for the Sample Variation Method and the
Dummy Population Method, I have never seen them in print anywhere, but they are so
simple that many people must know about them.

2 The Classical Power Method

We begin with the following general hypothesis-testing framework. The data are Y ; the
distribution of Y depends on the parameter θ, and we are testing a null hypothesis H0

using a size α test that corresponds to the critical region C .

Y = (Y1, . . . , Yn)
′, where n is the sample size.

Y ∼ Pθ, θ ∈ Θ,
H0 : θ ∈ Θ0 v.s. HA : θ ∈ Θ ∩Θc0,
and critical region C = {y : H0 is rejected when Y ∈ C}
with Pθ{Y ∈ C} ≤ α for all θ ∈ Θ0

(1)

Elements of the random quantity Y , elements of the corresponding set of fixed values y,
and the parameter θ can be very large vectors. For example, in testing the parameters of
a multivariate normal we might have Y = Y1, . . . ,Yn, θ = (µ,Σ) and f(y; θ) might be
the product of n multivariate normal densities.
The power of the test is defined as the probability of rejectiong the null hypothesis.

Symbolically, it is Pθ{Y ∈ C}. Note that

• Power is a function of the true parameter value θ; the common statistical tests have
infinitely many power values.
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• If H0 is true, power cannot exceed α; in fact, this is the definition of α.

• If the null hypothesis is false, more power is good.

• For a good test, power approaches one (for fixed sample size n) as the true parameter
values get farther from those specified by the null hypothesis.

• For a good test, power goes to 1 as n→∞ for fixed parameter values, provided H0

is false. Such tests are called consistent.

In the Classical Power Method, the sample size n is selected as follows. H0 can be false
in infinitely many ways, one for each value of θ. Select one that is interesting; if possible
select a value of θ corresponding to the weakest effect that would still be scienticically
important. If H0 is false in this way, we would like to have a high probability of rejecting
it. Calculating the power Pθ{Y ∈ C} repeatedly, increasing n until the power is as high
as you desire; that is the sample size you need.
There are only two difficulties with carrying out a classical power analysis in practice;

one is conceptual, the other technical. The conceptual problem is that it’s often difficult to
choose a configuration of parameter values corresponding to an effect that is scientifically
interesting. Who’s going to pick the paramter value? Not the statistician! Statisticians
don’t generally know enough about the subject matter to decide what is important; they
have to ask somebody, usually the client who brought them the request in the first place.
This is particularly true because the parameter values that are most useful in a power
analysis are typically in a kind of grey area, just barely far enough away from the null
hypothesis to be meaningful. The statistician really has to ask the client.
But the client doesn’t know either. He or she knows a lot about the subject mat-

ter, but seldom has much familiarity or comfort with the statistical model. In a better
world, the statistical model would be a true theoretical model for the data, and the
scientist planning data collection would be intimately familiar with its parameters and
their meaning. But it’s not a better world. At least in the biological and social sciences
(with the possible exception of Economics), the statistical models in common use are
deliberately quite generic, and the tests associated with them are seen as semi-arbitrary
conventions for deciding when it is permissible to discuss and publish a set of results. To
do a power analysis, one must take the model and its parameters seriously, and go beyond
a consideration of whether some of the parameters are zero or not. It’s not easy.
There is sometimes appears to be technical difficulty, too; it is this. Especially for sta-

tistical methods other than those based on common multiple regression, it can be difficult
to calculate the probability of rejecting the null hypothesis when it is false. This problem
is actually not very serious. The desired probability can almost always be approximated
by simulation. Here is an example.

2.1 An Example of Power Analysis by Simulation

Suppose we want to test whether a collection of variables are uncorrelated. That is,
we want to know if the off-diagonal elements of a correlation matrix (or equivalently, a
variance-covariance matrix) are all zero. Say we have 5 variables, we are willing to assume
multivariate normality, and we are going to use a large-sample likelihood ratio test. Would
n = 50 be large enough?
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As usual, the answer to such a question is another question: Large enough for what? It
might mean “Large enough for the large-sample test to have approximately size α”, or it
might mean “Large enough to detect a reasonable effect with acceptably high probability.”
Both questions can be answered by simulation; the second one is a standard question about
power, and that is the one we will consider.
Since the data in this case will be assumed multivariate normal, the parameter is

θ = (µ,Σ), where µ is a vector of five elements, and Σ is a 5 × 5 symmetric positive
definite matrix. We need to pick a particular value of θ corresponding to a reasonable
and scientifically interesting effect, and then calculate the probability of rejecting the null
hypothesis for that value of θ. Here is one possibility, out of infinitely many.
Suppose there are two “clusters” of variables. In the population, three of the variables

are correlated with one another at about level ρ = 0.30. The other two variables are
correlated at about 0.15, and the three variables in the first group are uncorrelated with
the two variables in the second group. Again, there are infinitelymany variance-covariance
matrices with this structure. We’ll just pick one.

Σ =


1.42 0.42 0.42 0.00 0.00
0.42 1.42 0.42 0.00 0.00
0.42 0.42 1.42 0.00 0.00
0.00 0.00 0.00 1.18 0.18
0.00 0.00 0.00 0.18 1.18

 (2)

By a sufficiency argument and the well-known independence of the sample mean vector
X and the sample variance-covariance matrix S, the value of µ we use does not matter;
we’ll just let µ be a vector of zeros. Thus, we have chosen a θ.
Denoting the sample variance-covariance matrix by S, and the jth sample variance

(diagonal element of S) by s2
j , the large-sample likelihood ratio test statistic for k variables

may be written

G = n(
k∑
j=1

log s2
j − log |S|), (3)

where |S| refers to the determinant of S. Under the null hypothesis that Σ is diagonal,
G has a chisquare distribution with 1

2
k(k − 1) degrees of freedom (the number of unique

off-diagonal elements). Here, the degrees of freedom equal 10.
Using the usual α = 0.05 significance level, how do we calculate the power — that

is, the probability that the chisquare test just described will yield p < 0.05? It would
be very hard or impossible to get an exact answer analytically, but it’s easy to get an
approximate answer by simulation. It may be done like this.

1. Randomly generate n = 50 observations from a multivariate normal with mean
vercor zero and variance-covariance matrix (2).

2. Compute the chisquare statistic G using (3).

3. Check whether G is significant at the 0.05 level.

Do this M times (M is the “Monte Carlo sample size”). By the Law of Large Numbers,
the proportion of tests that are significant converges to the probability of significance, or
power.
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The number we get, of course, will just be an estimate of the power. How accurate
is the estimate? We’ll accompany every Monte Carlo estimate of a probability with a
confidence interval. Here’s the formula. It’s based on the normal approximation to the
binomial, not bothering with a continuity correction.

P̂ ± z1−α
2

√
P̂ (1− P̂ )

M
(4)

This formula is implemented in the S function merror for “margin of error.”

merror <- function(phat,m,alpha) # (1-alpha)*100% merror for a proportion

{

z <- qnorm(1-alpha/2)

merror <- z * sqrt(phat*(1-phat)/m) # m is (Monte Carlo) sample size

merror

}

The Monte Carlo estimate of the probability is denoted by P̂ , the quantity M is the
Monte Carlo sample size, and z1−α/2 is the value with area 1 − α

2
to the left of it, under

the standard normal curve. Typically, we will choose α = 0.01 to get a 99% confidence
interval, so z1−α/2 = 2.575829.
How should we chooseM? In other words, how many data sets should we simulate? It

depends on how much accuracy we want. Since our policy is to accompany Monte Carlo
estimates with confidence intervals, we will choose the Monte Carlo sample size to control
the width of the confidence interval. The following table can be useful.

Table 1: Monte Carlo Sample Size Required to Estimate Power with a Specified 99%
Margin of Error

Power Being Estimated
Margin of Error 0.70 0.75 0.80 0.85 0.90 0.99

0.10 140 125 107 85 60 7
0.05 558 498 425 339 239 27
0.01 13,934 12,441 10,616 8,460 5,972 657
0.005 55,734 49,762 42,464 33,838 23,886 2,628
0.001 1,393,329 1,244,044 1,061,584 845,950 59,7141 65,686

Now we have all the information we need. Let’s choose M = 10, 000, to get a margin
of error equal to 0.01 if the power is a respectable 0.80. Here’s some S code.

# cvm.R

# Power for test of zero correlation for an entire matrix

# (Large Sample LR Test)

# Execute with source("cvm.R")

#

M <- 10000

sim <- numeric(M)

set.seed(32448)

n <- 50 ; v1 <- .42 ; v2 <- .18
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s1 <- sqrt(v1) ; s2 <- sqrt(v2)

G <- function(datamat)

{

nn <- dim(datamat)[1] ; kk <- dim(datamat)[2] ; df <- kk*(kk-1)/2

G <- numeric(3)

names(G) <- c("Chisq","df","P-value")

S <- var(datamat)

G[1] <- nn * ( sum(log(diag(S))) - sum(log(eigen(S)$values)) ) #$

G[2] <- df

G[3] <- 1 - pchisq(G[1],df)

G

} # End function G

merror <- function(phat,m,alpha=0.01) # (1-alpha)*100% merror for a proportion

{

z <- qnorm(1-alpha/2)

merror <- z * sqrt(phat*(1-phat)/m) # m is (Monte Carlo) sample size

merror

}

for(j in 1:M)

{

e1 <- rnorm(n,0,s1) ; e2 <- rnorm(n,0,s2)

x1 <- rnorm(n)+e1 ; x2 <- rnorm(n)+e1 ; x3 <- rnorm(n)+e1 ;

x4 <- rnorm(n)+e2 ; x5 <- rnorm(n)+e2

dat <- cbind(x1,x2,x3,x4,x5)

# print(G(dat))

print(j)

sim[j] <- G(dat)[3] < .05

}

poww <- length(sim[sim==1])/M

cat("Power = ", poww ,"\n")

cat("Plus or Minus 99% Margin of error: ",merror(poww,M),"\n")

Here’s the output.

Power = 0.6987

Plus or Minus 99% Margin of error: 0.01181849

2.2 The Normal Linear Model

In this section, we are concerned concerned with the usual univariate linear model with
independent normal errors; note that this model subsumes all the usual fixed-effects fac-
torial analysis of variance and covariance methods. Here is the model.

Y = Xβ + ε, (5)
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where X is an n× r matrix of known constants, β is a r×1 vector of unknown constants,
and ε is multivariate normal with mean zero and covariance matrix σ2In, and σ

2 > 0 is an
unknown constant. It will be assumed that the rank of X is r, so the maximum likelihood

estimate (MLE) of β is β̂ = (X′X)−1X′Y , and the MLE of σ2 is σ̂2 = (Y−X�̂)′(Y−X�̂)
n

.

The Mean Squared Error (MSE) is n σ̂
2

n−r .
We will consider linear null hypotheses of the form H0 : Cβ = h, where C is a q × r

matrix of row rank q ≤ r. The F statistic for testing this null hypothesis is

F ∗ =
(Cβ̂ − h)′(C(X′X)−1C′)−1(Cβ̂ − h)

q MSE
(6)

Under the model assumptions and null hypothesis, F ∗ has an F distribution with q and
n−r degrees of freedom. This distribution is the familiar “central” F distribution; it holds
when the null hypothesis is true. When H0 is false, F

∗ has a noncentral F distribution
with parameters q, n− r and φ. The quantity φ is a sort of squared distance between Cβ
and h, and is measure of how wrong the null hypothesis is. It is called the noncentrality
parameter of the noncentral F distribution. Because φ is a squared distance, we always
have φ ≥ 0. If φ = 0, the noncentral F distribution reduces to the usual central F . A
useful formula for φ is

φ =
(Cβ − h)′(C(X′X)−1C′)−1(Cβ − h)

σ2
(7)

This expression is taken from Sen and Srivastava (provide reference with page). Other
texts define the noncentrality parameter in a variety of different ways. If you are looking
at textbook examples or power tables, you need to be very careful about which definition
is being used. Because power analysis is best done with software rather than tables, it’s
helpful to know that SAS, SPlus and R use (7) as their definition of the noncentrality
parameter.
Letting F ∗ represent a random variable with a noncentral F (q, n− r, φ) distribution

and denoting the 1−α quantile of the central F distribution by F1−α(q, n− r), the power
of the F -test is Pr{F ∗ > F1−α(q, n− r)}. This probability — that is, the power — is an
increasing function of φ. As φ increases, power approaches one.
Remember the recipie for selecting a sample size with the classical power method.

First, pick a specific parameter value representing a scientifically meaningful way in which
the null hypothesis could be false. Then, assuming that parameter value, increase the
sample size until power is acceptably high. How does this work in the present case?
First, notice that though the parameter θ = (β, σ2) is of dimension r + 1, power

depends on θ only through φ, a one-dimensional function of θ and the X matrix. For
any given X matrix, infinitely many values of θ are represented by a single noncentrality
parameter φ. This is a valuable simplification.
Second, the sample size n is hidden just under the surface in formula (7), because n is

the number of rows in the X matrix. Thus, φ depends on n through X′X. For example,
if the regression model has an intercept, the upper left-hand element of the X′X matrix
is n.
Now we will consider a set of examples, moving from the simple to the more complex

and realistic. We’ll start with the comparison of two means (the two-sample t-test), then
do the comparison of more than two means (one-way ANOVA), multifactor ANOVA, and
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finally general linear regression models in which one or more independent variables may be
random. I believe that the discussion accompanying the simpler examples is informative
about power analysis in general, or I would not have included it. However, a reader who
wants to just do a power analysis for some factorial ANOVA design with fixed effects can
skip to Section 2.2.3 on factorial experiments and look at the matrix approach.

2.2.1 Comparing Two Means

At this point, a simple example may be useful. We will fit a power analysis for a two-
sample t-test into the multiple regression framework we have been developing. This will
clarify the meaning of some of the notation, and also reveal features shared by more
complicated and realistic cases.
Suppose we have a random sample of size n1 from a normal distribution with mean µ1

and variance σ2, and independently, a second random sample from a normal distribution
with mean µ2 and variance σ

2. We wish to test H0 : µ1 = µ2 versus the alternative
Ha : µ1 �= µ2.
We’ll do it with dummy variable regression, letting xi = 1 if observation i is from

population one, and xi = 0 if observation i is from population two. The model is the
usual simple regression model

Yi = β0 + β1xi + εi,

where ε1, . . . , εn are independent Normal(0, σ
2) random variables, and n = n1 + n2.

Clearly, he have µ1 = β0 + β1, µ2 = β0, and we are testing H0 : β1 = 0. In matrix
notation,

C =
[
0 1

]
,β =

[
β0

β1

]
, and h = [0].

The X matrix has n = n1 + n2 rows; The first column is all ones, and the second
column has n1 ones and n2 zeros. The X

′X matrix is[
n

∑n
i=1 xi∑n

i=1 xi
∑n
i=1 x

2
i

]
=

[
n1 + n2 n1

n1 n1

]
,

and

(X′X)−1 =

[
1
n2

− 1
n2

− 1
n2

1
n1
+ 1

n2

]
.

Therefore, in this case the noncentrality parameter in (7) equals

φ =
β2

1

σ2

(
n1n2

n1 + n2

)
= n

(
µ1 − µ2

σ

)2 n1

n

n2

n
= nf(1− f)

(
µ1 − µ2

σ

)2

(8)

= nf(1− f)d2, (9)

where f = n1
n
, and d = |µ1−µ2|

σ
. Now some comments are in order.

• The quantity d = |µ1−µ2|
σ
is called the effect size. The effect size specifies how wrong

the null hypothesis µ1 = µ2 is, by expressing the absolute difference between µ1 and
µ2 in units of the common within-cell standard deviation σ.
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• The notation d for effect size is consistent with Cohen’s [1] Statistical power analysis
for the behavioral sciences. Cohen uses a boldface d to refer to effect size for the
two-sample t-test.

• For any statistical test, power is a function of the parameter values. Here, the
noncentrality parameter (and hence, power) depends on the three parameters µ1,
µ2 and σ

2 only through the effect size d.

• If the effect size is zero — that is, if the null hypothesis of equal means is true —
the noncentral F distribution becomes the usual central F distribution, and the
probability of significance (power) becomes exactly α. For any non-zero effect size
and any allocation of sample size to the two treatments (of course neither sample
size may be zero), the greater the total sample size, the greater the power.

• For any sample size and any allocation of sample size to the two treatments, the
greater the effect size, the greater the power.

• f = n1

n
is the fraction of cases allocated to Treatment One. Thus, we see that power

depends not just on sample size and effect size, but on an aspect of design – the
allocation of sample size to the two treatments. This is a general feature of power
in the analysis of variance and other statistical methods. It is important, but often
ignored.

• What allocation of sample to treatments results in the greatest power? It’s a simple
calculus exercise to show that the function g(f) = f(1−f) is maximizedwhen f = 1

2
.

This tells us that for comparing two means using the classical normal model, power
is highest when the sample sizes are equal; and this holds regardless of the total
sample size or the magnitude of the effect.

• This is a clear, simple example of something that holds for any classical ANOVA.
The noncentrality parameter, and hence the power, depends on the total sample
size, the effect, and the allocation of the sample to treatment combinations.

• When there are more than two treatments, equal sample sizes do not always yield
the highest power. In general, the optimal allocation depends on the hypothesis
being tested and the nature of the true effect.

Here’s how to select a sample size using the classical power method for this two-sample
case.

1. Let f = 1
2
(equal sample sizes), because this maximizes power for any sample size

and any effect size in the present case.

2. Choose an effect size; if possible, select the smallest effect that is still scientifically
important. You don’t need to specify values of µ1, µ2 and σ individually, but you
do need to be able to express a difference between population means in units of the
population standard deviation.

3. Choose a desired power; a common choice is 0.80, but it’s up to you.

9



4. Start with a modest but realistic value for the total sample size n. Increase it, each
time determining the critical value of F ∗, calculating the noncentrality parameter
φ, and using φ to compute the probability that F ∗ will exceed the critical value.
When that power becomes high enough, stop.

So, suppose we want to be able to detect a difference between population means of
half a standard deviation, with probability 0.80. With f = 1

2
and d = 1

2
, the noncentrality

parameter for the two-sample case (formula 8) equals n
16
.

Most books on experimental design have some nasty power tables that only apply to
limited cases anyway. It is better to use a computer. Again, the definition of φ given
in (7) is the one used by SAS, SPlus and R.
Here is some R input and output. It was convenient to start with a likely range of n

values, generate the power for each n, and then do the search by eye; that way it’s two
lines of code. The required sample size is n = 128.

> n <- seq(from=120,to=140,by=2) ; phi <- n/16 ; ddf <- n-2

> cbind(n,pf(qf(.95,1,ddf),1,ddf,phi,FALSE))

n

[1,] 120 0.7752659

[2,] 122 0.7820745

[3,] 124 0.7887077

[4,] 126 0.7951683

[5,] 128 0.8014596

[6,] 130 0.8075844

[7,] 132 0.8135460

[8,] 134 0.8193475

[9,] 136 0.8249920

[10,] 138 0.8304825

[11,] 140 0.8358223

Here is how one might do the same thing with SAS. Note that this program does not
produce a list file; it writes on the log file using put statements.

/***************** fpow.sas *********************/

options linesize = 79 pagesize = 35 noovp formdlim=’-’;

data fpower; /* Replace alpha, q, r and wantpow below */

alpha = 0.05; /* Signif. level for testing H0: C Beta = h */

q = 1; /* Numerator df = # rows in C matrix */

r = 2; /* There are r beta parameters */

wantpow = .80; /* Find n to yield this power */

power = 0; n = r+2; oneminus = 1-alpha; /* Initializing ... */

do until (power >= wantpow);

n = n+1 ;

ncp = n/16;

df2 = n-r;

power = 1-probf(finv(oneminus,q,df2),q,df2,ncp);

end;
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put ’ ’;

put ’ *********************************************************’;

put ’ A sample size of ’ n ’is needed to have probability ’ ;

put ’ ’ wantpow ’ of rejecting H0’;

put ’ *********************************************************’;

put ’ ’;

put ’ ’;

And the log file contains the following output (along with a load of other stuff, of course):

*********************************************************

A sample size of 128 is needed to have probability

0.8 of rejecting H0

*********************************************************

2.2.2 Comparing r Means: One-way ANOVA

The preceding example was somewhat informative; but unfortunately, almost nobody
designs a study with just two treatments. A little better is the standard one-factor analysis
of variance. That is, there are r treatments, and the response variable is assumed normally
distributed within treatments. The means of these r normal distributions may differ, but
they all have the same variance σ2. The null hypothesis is H0 : µ1 = . . . = µr. For this
case, the noncentrality parameter in (7) reduces to

φ =

∑r
k=1 nk(µk − µ.)

2

σ2
, (10)

where µ. =
∑r
k=1

nk
n
µk.

Written in this form, the noncentrality parameter clearly reflects the dispersion of
treatment means in the population; it equals zero if and only if they are all the same.
Expression (10) is instructive in several ways.
By bringing σ2 up into the numerator, (10) may be rewritten

φ =
r∑

k=1

nk

(
µk − µ.

σ

)2

,

so the noncentrality parameter is based on deviations from the average treatment mean
relative to the within-treatment standard deviation. This is like the two-sample case, and
in fact is a general feature of power analysis under the normal model. It is very difficult to
avoid specifying differences among means relative to the error standard deviation. This
can make power analysis quite difficult to carry out in practice, because typically nobody
has the faintest idea what the error standard deviation is.
Another way to re-write (10) is

φ = n

∑r
k=1

nk
n
(µk − µ.)

2

σ2
= n

∑r
k=1 fk(µk − µ.)

2

σ2
, (11)

where fk =
nk
n
. Notice how division and multiplication by n allows us to write the

noncentrality parameter as the product of the sample size and a quantity that is either a

11



constant or settles down rapidly to a constant as the sample size increases. This trick is
always useful, even in the most general setting.
In the two-sample case, the noncentrality parameter was the product of sample size,

effect size and the configuration of relative sample sizes. Therefore, it was possible to
optimize relative sample size (obtaining equal sample sizes as the solution) for any non-
zero effect size. However, (11) tells us that once we get beyond two groups, effect and
design are mixed together in a way that’s impossible to separate.

Should the quantity
∑r

k=1
fk(µk−µ.)2

σ2 still be called effect size? The answer is a reluctant
“Yes.” The affirmative is reluctant because

• It is not a pure effect size of the sort we saw in the two-sample case; it is “size”
in a metric strongly influenced by the design — in particular, by the allocation of
relative sample size to treatments.

• In the case of two treatments, it does not reduce to d = |µ1−µ2|
σ
, the quantity called

“effect size” in Section 2.2.1. In the two-sample case, the quantity we are now calling
effect size equals d2/4.

• Really, “size” should be the distance between Cβ and h, and the quantity we are
discussing is a squared distance. But this is pedantic, and the better choice here is
simplicity over precision.

Anyway, for the one-factor ANOVA model, the term effect size will refer to∑r
k=1 fk(µk − µ.)

2

σ2
.

This is a special case of expression (16), which applies to multiple regression in general.
Clearly, the noncentrality parameter (and hence the power) will be increased by al-

locating a larger fraction of the observations to the treatment whose population mean is
most different from the average. If nothing else, this teaches us that equal sample sizes
do not always yield optimal power except in the two-sample case.
Still, if one had a good prior idea of which treatments would be most different, one

could increase power by allocating more of the sample to those treatments expected to be
most different from the average. For a given configuration of population treatment means,
one could optimize the relative sample sizes first, and then find the total sample size needed
to get the desired power. One could even replace relative sample sizes by continuous
quantities and do the optimization numerically for a chosen pattern of treatment means.
It’s too bad, but this approach is not productive most of the time. It can be proved

that for any set of treatment means in a one-factor design, the noncentrality parameter
is maximized by giving all the observations to the two treatments whose means are most
different, and none to the others. Then, of course, we know that the two sample sizes
should be equal. This solution is just not interesting, assuming that one has a good reason
to collect data on more than two treatments.
Therefore, what people do most of the time is just close their eyes and use equal sample

sizes. This is reasonable enough, and in designs with more than one independent variable,
it has the advantage that independent variables are unrelated, and therefore treatment
effects are not confounded with one another.
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In the case of equal sample sizes, fk =
1
r
for k = 1, . . . , r, µ. is the arithmetic mean of

the treatment means, and (11) becomes

φ = n
1
r

∑r
k=1(µk − µ)2

σ2
. (12)

Here, φ is the sample size multiplied by an effect size that looks like the ratio of two
variances. One might think of it as a signal-to-noise ratio; this might make it easier to
choose a meaningful effect size in some fields.

Computed Examples Suppose we have four treatments, and that the four population
treatment means are equally spaced, one-quarter of a standard deviation apart. We’d like
to be able to detect the differences among treatment means with probability 0.80, using
the conventional significance level of α = 0.05. We’ll use equal sample sizes.
Without loss of generality, we’ll let the four population treatment means be 0, 0.25,

0.50 and 0.75. Using R as a calculator, and remembering that the var function divides
by the number of observations minus one, we’ll calculate the effect size in (12) as

> 3 * var(c(0,.25,.5,.75)) / 4

[1] 0.078125

Here is fpow2.sas, a SAS program for finding the required n. Like fpow.sas, it writes on
the log file, producing no list file. This program is quite general. It may be used for any
version of the multiple regression model (5). Just edit the file to new substitute values for
some of the parameters. The main shortcoming this program is that you must calculate
the effect size yourself.

***************** fpow2.sas ************************************************/

options linesize = 79 pagesize = 100 noovp formdlim=’-’; /* */

data fpower; /* Replace alpha, q, r, effsize and wantpow below */

alpha = 0.05; /* Signif. level for testing H0: C Beta = h */

q = 3; /* Numerator df = # rows in C matrix */

r = 4; /* There are r beta parameters */

effsize = 0.078125; /* Effect size is ncp/n */

wantpow = .80; /* Find n to yield this power */

power = 0; n = r+2; oneminus = 1-alpha; /* Initializing ... */

/*****************************************************************************/

do until (power >= wantpow);

n = n+1 ;

ncp = n * effsize;

df2 = n-r;

power = 1-probf(finv(oneminus,q,df2),q,df2,ncp);

end;

put ’ ’;

put ’ ***************************************************************’;

put ’ With ’ r ’ beta parameters, testing H0 of ’ q ’ linear’;

put ’ restrictions on the betas and an effect size of ’ effsize ’,’;

put ’ A sample size of ’ n ’is needed to have probability ’ ;
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put ’ ’ wantpow ’ of rejecting H0 at significance level alpha = ’ alpha;

put ’ ***************************************************************’;

put ’ ’;

put ’ ’;

Here is the output; it appears on the log file.

*****************************************************************

With 4 beta parameters, testing H0 of 3 linear.

restrictions on the betas and an effect size of 0.078125 ,

A sample size of 144 is needed to have probability

0.8 of rejecting H0 at significance level alpha = 0.05

*****************************************************************

Now we’ll do the same thing with S. Below is a listing of the file fpow2.R. All it
contains is the definition of the function fpow2. The name is chosen for similarity to the
SAS program that does the same job. There is no S function fpow or fpow1.

fpow2 <- function(r,q,effsize,wantpow=0.80,alpha=0.05)

#############################################################################

# Power for the general multiple regression model, testing H0: C Beta = h #

# r is the number of beta parameters #

# q Number rows in the C matrix = numerator df #

# effsize is ncp/n, a squared distance between C Beta and h #

# wantpow is the desired power, default = 0.80 #

# alpha is the significance level, default = 0.05 #

#############################################################################

{

pow <- 0 ; nn <- r+1 ; oneminus <- 1 - alpha

while(pow < wantpow)

{

nn <- nn+1

phi <- nn * effsize

ddf <- nn-r

pow <- 1 - pf(qf(oneminus,q,ddf),q,ddf,phi)

}#End while

fpow2 <- nn

fpow2 # Returns needed n

} # End of function fpow2

The function fpow2 is made available to R by executing fpow2.R with the source
command. Then the function is invoked, yielding the same answer of n = 144 that we
got from SAS. Notice how the last two parameters are not specified; this has the effect of
using the default values of 0.05 for the significance level and 0.80 for the desired power.

> source("fpow2.R")

> fpow2(r=4,q=3,effsize=0.078125)

[1] 144
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Here is another one-way ANOVA example; this one is quick. Viewing the non-
centrality parameter as a signal-to noise ratio, suppose we wanted to detect a ratio of
1
10
with probability 0.80. For comparison, in the two-sample case, half a σ difference

between µ1 and µ2 corresponds to a signal
1
16
as great as the background noise. Suppose

we have equal sample sizes, and this time there are six treatments.

> source("fpow2.R")

> fpow2(r=6,q=5,effsize=0.10)

[1] 134

2.2.3 Factorial Experiments

This section is concerned with designed experiments having one or more categorical in-
dependent variables. All of the independent variables in the study must be manipulated;
there can be no covariates or measured categorical independent variables. This case is
limited, but still of practical interest. There are two main ways to do it. One is to cal-
culate the effect size from some special-purpose formula, and then use the SAS program
fpow2.sas or the S function fpow2. The key to getting such special-purpose formulas is
given in the Substitution Method below.
The other way is to express one’s hypothesis of interest as a collection of contrasts of

the cell means, and to specify a set of non-zero values for one or more of these contrasts (in
units of the common within-treatment standard deviation). With this information, the
effect size can be calculated by the same program that searches for the required sample
size. This method is explained in the Matrix Approach, which comes directly after the
substitution method. The matrix approach is recommended for readers who want to just
get in and do a power analysis quickly — but they must be comfortable with specifying
effects in terms of contrasts.

The Substitution Method There has been some real benefit to using the special-
purpose formulas (10) and (11) for the noncentrality parameter in the one-way case. Now
we’ll see where these formulas came from, and how to get similar expressions for any
factorial design with fixed effects.
If expression (10) for the noncentrality parameter in one-way ANOVA looks familiar,

it’s no accident. The numerator is the standard elementary formula for the Between-
Groups sum of squares in a one-way ANOVA, except with µ values substituted for Y
values. This happens because formula (6) for the general F statistic, and formula (7) for
the noncentrality parameter are so similar. Basically, any re-expression of

(Cβ̂ − h)′(C(X′X)−1C′)−1(Cβ̂ − h),

as a function of the sample cell means corresponds to a re-expression of

(Cβ − h)′(C(X′X)−1C′)−1(Cβ − h).

as a function of the population cell means — and it’s the same function.
Therefore, to obtain a formula for the noncentrality parameter, all you have to do is

locate a convenient formula for the F -test of interest. In the expression for the numerator
sum of squares, replace sample cell means by population cell means. Then divide by σ2.
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Table 1: Cell Means in a 3 by 2 design

Level of B
Level of A 1 2 Average

1 µ11 µ12 µ1.

2 µ21 µ22 µ2.

3 µ31 µ32 µ3.

Average µ.1 µ.2 µ..

The result is a formula for the noncentrality parameter. This principle yields (10) without
effort, and it applies to any F -test in any fixed-effects factorial ANOVA model.
The substition principle follows easily from a more general result in Scheffé’s [4] The

analysis of variance. The following is nearly a direct quote of his “Rule 1” on Page 39,
except that the notation of the present report is employed.

Sche��e's Rule 1: Under the general linear regression model (5), the value of
the noncentrality parameter φ of the noncentral F -distribution of the statistic
F ∗ may be calculated as follows: If, in the sum of squares in the numerator
of F ∗ each observation Yi is replaced by its expected value E[Yi], the result is
φσ2.

Scheffé’s Rule 1 is valid for any multiple regression model of the form (5), though
its usefulness for sample size selection would seem to apply mostly to factorial ANOVA.
Depending on what formula you are using for the F statistic, it may sometimes be easier
to use Scheffé’s Rule than to substitute population means for sample means.
Here is an example. Suppose we have a two-factor design. Factor A has three levels,

and factor B has two levels. The table of population cell means looks like this. Dots
in the subscripts indicate averaging over the indicated dimension, so that for example,
µ.2 = (µ1,2 + µ2,2 + µ3,2)/3.
Suppose we are interested in the interaction. Looking up the formula for SSAB in [3]

and assuming equal sample sizes, we find the following on p. 822:

SSAB = n
∑
i

∑
j

(Y ij. − Y i.. − Y .j. + Y ...)
2. (13)

The first remark about formula 13 is a warning. Here, the symbol n refers to the
common sample size in each of the six cells, not the total sample size. This illustrates
an unpleasant feature of the Substitution Method. When you look up special-purpose
formulas, you must take some care to know what the notation means. It’s best to use a
familiar text if you can.
Anyway, the substitution principle says that to get the noncentrality parameter, we

just substitute population means for sample means and divide by σ2. Writing the non-
centrality parameter as sample size times effect size (now n refers to the total sample size,
as it should) we obtain

φ = n× 1
6

∑3
i=1

∑2
j=1(µij − µi. − µ.j + µ..)

2

σ2
. (14)
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Looking at (14), it’s hard to see how anyone from any discipline could say what a
reasonable effect size is. As far as I can tell, the only solution is to make up an effect,
and apply the formula to it. Suppose that for A=1 and A=2, the population mean of
Y is a quarter of a standard deviation higher for B=2, but if A=3, the population mean
of Y is a quarter of a standard deviation higher for B=1. Of course there are infinitely
many sets of means satisfying these constraints, even if they are expressed in standard
deviation units. But they will all have the same effect size, and they will have the same
pattern of non-parallel slopes when graphed. One such pattern is the following.

Level of B
Level of A 1 2 Average

1 0.000 0.250 0.125
2 0.000 0.250 0.125
3 0.000 -0.250 -0.125

Average 0.000 0.083 0.042

Here us a bit of S code to calculate effect size for these values, using (14); remember,
the noncentrality parameter is the product of sample size and effect size. The calculation
assumes that population means are already expressed in units of the common within-cell
standard deviation σ, and it preserves more decimal places of accuracy than the table
above.

tab <- numeric(12) ; dim(tab) <- c(4,3)

tab[1,2] <- .25 ; tab[2,2] <- .25 ; tab[3,2] <- -.25

tab[4,1] <- mean(tab[1:3,1]) ; tab[4,2] <- mean(tab[1:3,2])

for(i in 1:4) tab[i,3] <- mean(tab[i,1:2])

tab

effsize <- 0

for(i in 1:3)

{

for(j in 1:2)

{

effsize <- effsize + (tab[i,j]-tab[i,3]-tab[4,j]+tab[4,3])^2

} # Next j

} # Next i

effsize <- effsize/6

cat("Effect size is ",effsize,"\n")

The effect size is 0.01388889. Now we’ll use a modification of fpow.sas to search for
a total sample size yielding power 0.80 assuming the 5% significance level. Notice that
the program has been modified to increase in increments of six, since since there are six
cells in the design and we are assuming equal sample sizes.

***************** fpow2b.sas ************************************************/

options linesize = 79 pagesize = 100 noovp formdlim=’-’; /* */

data fpower; /* Replace alpha, q, r, effsize and wantpow below */

alpha = 0.05; /* Signif. level for testing H0: C Beta = h */

q = 2; /* Numerator df = # rows in C matrix */
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r = 6; /* There are r beta parameters */

effsize = 0.01388889;/* Effect size is ncp/n */

wantpow = .80; /* Find n to yield this power */

power = 0; n = r+6; oneminus = 1-alpha; /* Initializing ... */

/*****************************************************************************/

do until (power >= wantpow);

n = n+6 ;

ncp = n * effsize;

df2 = n-r;

power = 1-probf(finv(oneminus,q,df2),q,df2,ncp);

end;

put ’ ’;

put ’ ***************************************************************’;

put ’ With ’ r ’ beta parameters, testing H0 of ’ q ’ linear’;

put ’ restrictions on the betas and an effect size of ’ effsize ’,’;

put ’ A sample size of ’ n ’is needed to have probability ’ ;

put ’ ’ wantpow ’ of rejecting H0 at significance level alpha = ’ alpha;

put ’ ***************************************************************’;

put ’ ’;

put ’ ’;

Here is a piece of the log file, containing the output.

***************************************************************

With 6 beta parameters, testing H0 of 2 linear

restrictions on the betas and an effect size of 0.01388889 ,

A sample size of 702 is needed to have probability

0.8 of rejecting H0 at significance level alpha = 0.05

***************************************************************

Just for completeness, we’ll do it with the S function fpow2 as well. Note that unlike
the SAS program, the S function has not been modified to yield a sample size that is a
multiple of six.

> source("fpow2.R")

> fpow2(r=6,q=2,effsize=0.01388889,wantpow=0.80,alpha=0.05)

[1] 697

To preserve equal sample sizes, we would need to increase this value to the next multiple
of six, yielding n = 702, the same answer we got from fpow2b.sas above. To attain the
desired power, we need 117 observations in each cell.
Here is what we have learned from our examination of the Substitution Method. For

any F -test in a factorial ANOVA, we can use a formula for the numerator sum of squares
in the F -test to obtain a similar formula for the non-centrality parameter – and hence
for effect size. Such formulas may provide valuable insight; they certainly do in the cases
of the two-sample t-test and the one-way ANOVA. However, as a way of doing power
analysis in proctice, there are some disadvantages to this approach.
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• It is necessary to locate a special-purpose formula for the F -ratio’s numerator sum of
squares. For more obscure hypotheses, this can be frustrating and time-consuming.

• Once you have located a formula for the numerator sum of squares, you must take
care to understand the notation. This also can be expensive in terms of time.

• Once you have a special-purpose formula for the noncentrality parameter, it may
or may not be easy to interpret. If the formula is difficult to interpret (as in the
example of a two-factor interaction), it may not be obvious what a reasonable effect
size is. Frequently, it will be necessary to make up a plausible effect, and then use
the formula to calculate the size of the effect.

• Calculating effect size from a special-purpose formula may be cumbersome for larger
designs, and may involve careful work with a calculator or a bit of programming.
Errors are possible, including subtle difficulties with rounding error.

For practical use, the matrix approach below may be better in many cases.

AMatrix Approach Special-purpose formulas like (10) may yield insight, but they are
not always the most convenient way to calculate the noncentrality parameter in practice.
Sometimes, it is preferable to use the general expression (7), and let software compute
the noncentrality parameter as part of the power calculation. Here is an approach that
is specialized for fixed-effects factorial ANOVA. Sample sizes need not be equal or pro-
portional. For unbalanced designs, the approach assumes F -tests that are based on the
equivalent of SAS’s Type III sums of squares, in which every effect is tested controlling
for all other effects in the model.
Consider a one-way design with r cells. For multi-factor designs, create a single cate-

gorical independent variable whose values are the treatment combinations. That is, there
will be r treatment combinations. Tests for main effects, interactions and so on will cor-
respond to tests on collections of contrasts of the r cell means. More detail will be given
presently.
We will use a dummy variable coding scheme with r indicator dummy variables and

no intercept. Specifically, let

xi,j =

{
1 if observation i is in treatment group j
0 otherwise

for i = 1, . . . , n and j = 1, . . . , r. Then the expected value of the response variable for an
observation in treatment group j is

E[Yi] = β1xi,1 + . . . + βrxi,r = βj

This is the well-known cell means dummy variable coding scheme. See [3] for a detailed
exposition. One advantage of using this dummy variable setup is that the X′X matrix
takes a particularly simple form; it is diagonal, with treatment sample sizes on the main
diagonal. Denoting the number of observations in treatment j by nj , we have

X′X =


n1 0 · · · 0
0 n2 · · · 0
...
...
. . .

...
0 0 · · · nr

 .
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Let fj =
nj
n
represent the relative sample size in treatment j. Then, multiplying and

dividing by the total sample size n, expression (7) for the noncentrality parameter may
be re-written as

φ = n× (Cβ − h
σ

)′(C


1/f1 0 · · · 0
0 1/f2 · · · 0
...

...
. . .

...
0 0 · · · 1/fr

C′)−1(
Cβ − h

σ
) (15)

We may observe several things from (15).

• As usual,the noncentrality parameter is sample size times a quantity that we reluc-
tantly call effect size.

• The null hypothesis isH0 : Cβ = h. The vectorCβ−h represents an effect —- that
is, a particular way in which the null hypothesis is wrong. This difference between
Cβ and h is naturally expressed in units of the common within-treatment standard
deviation σ, and in general there is no reasonable way to avoid it.

• Of course, usually h = 0.

• The quantity we are calling effect size is quite literally a squared distance between
Cβ and h, scaled by σ, and in a space that is warped and stretched by the relative
sample sizes. If the sample sizes are all equal and the contrasts are made to be
orthoganal, it would be a multiple of squared Euclidian distance.

• To actually do a power analysis in this setting, all you need is a vector of relative
sample sizes, and a vector of numbers representing the difference between Cβ and
h in units of σ (the effect).

Setting up the matrix C merits a bit of discussion. Define a contrast as a linear com-
bination whose coefficients (not all zero) add up to zero. We will test whether collections
of contrasts of treatment means all equal zero. Thus, h will always be 0, and the rows of
C will be the coefficients of q contrasts. Of course β is a vector containing the treatment
means.
Let’s see how the usual tests for main effects and interactions would be represented in

terms of contrasts. Look at the cell means in Table (2.2.3), used for the discussion of the
Substitution Method. Stringing out the 6 treament combinations into a single factor and
using cell means dummy variable coding, we have

β =



µ11

µ12

µ21

µ22

µ31

µ32


.

To test the main efects of Factor A, we test whether the three marginal means are
equal. The null hypothesis could be written H0 :

µ11+µ12

2
= µ21+µ22

2
= µ31+µ32

2
, which is
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equivalent to the two statements µ11+ µ12− µ21− µ22 = 0 and µ21+ µ22− µ31 − µ32 = 0.
Therefore, we could use the contrast matrix

C =

[
1 1 −1 −1 0 0
0 0 1 1 −1 −1

]
.

Of course infinitely many contrast matrices are correct; and it can make a difference which
one you use, since the magnitude of the effect can be affected. Since it’s more natural to
think of differences between marginal means than marginal sums, it might be better to
use this contrast matrix for the main effect of factor A:

C =

[
1
2

1
2
−1

2
−1

2
0 0

0 0 1
2

1
2
−1

2
−1

2

]
.

For the main effect of B, the contrast matrix has just one row.

C =
[

1
3
−1

3
1
3
−1

3
1
3
−1

3

]
.

An interaction between A and B would mean that the effect of B depends on the value
of A. The null hypothesis, then, would be that the effect of B does not depend on the
level of A. In symbols, it could be written H0 : µ11 − µ12 = µ21 − µ22 = µ31 − µ32. The
contrast matrix has two rows (one for each equals sign):

C =

[
1 −1 −1 1 0 0
0 0 1 −1 −1 1

]
.

It should now be clear that for any ordinary hypothesis test in a factorial ANOVA, it is
straightforward to set up the contrast matrix for carrying out the test of Ho : Cβ = 0.
The SAS program matpow1.sas uses proc iml to implement the matrix approach.

Unlike fpow.sas and fpow2.sas, it writes results on the list file rather than the log file.
Here is an example. For A=1 and A=2, the population mean of Y is a quarter of a
standard deviation higher for B=2, but if A=3, the population mean of Y is a quarter of
a standard deviation higher for B=1.

/********************************* matpow1.sas ******************************/

title ’Power analysis for fixed-effects factorial ANOVA: Matrix approach’;

options linesize = 79 pagesize = 100 noovp formdlim=’-’;

proc iml;

/********* Edit this input: Rows of matrices are separated by commas ********/

alpha = 0.05;

wantpow = .80;

f = {1,1,1,1}; /* Relative sample sizes */

C = { 0 0 -1 1, /* Contrast matrix */

0 -1 1 0,

-1 1 0 0};

eff = {.25,.25,.25}; /* In standard deviation units */

/*****************************************************************************/

r = nrow(f) ; q = nrow(eff); f = f/sum(f);

/*** Echoing input ***/

print " Significance level: " alpha;

print " Desired power: " wantpow;

print " Relative sample sizes:" f;

print " Contrast matrix "; print C;

print " Effect matrix (in SD units): " eff;

print " ";

/*** Checking input ***/
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print " Checking input ... ";

inerr = 0; /* Input error = no. This may be changed below */

if nrow(C) ^= q then do;

print "Error: Length of eff must equal number of rows in C";

inerr=1;

end;

if ncol(C) ^= r then do;

print "Error: Length of f must equal number of cols in C";

inerr=1;

end;

if eff‘*eff = 0 then do;

print "Error: eff can’t be zero; this would cause an infinite loop!";

inerr=1;

end;

aa = min(f##2);

if aa = 0 then do;

print "Error: No sample size may be zero.";

inerr=1;

end;

/*** Proceed if no input errors ***/

if inerr = 1 then abort;

else do;

print "Input appears to be okay. ";

core = inv(C*inv(diag(f))*C‘);

effsize = eff‘*core*eff; print " Effect size = " effsize;

power = 0; n = r+1; oneminus = 1-alpha; /* Initializing ...*/

do until (power >= wantpow);

n = n+1 ;

ncp = n * effsize;

df2 = n-r;

power = 1-probf(finv(oneminus,q,df2),q,df2,ncp);

end; /* End Loop */

print " ";

print " Required sample size is " n;

print " ";

print " ";

end; /* End computation (Conditional on no input errors) */

Here is the list file.

-------------------------------------------------------------------------------

Power analysis for fixed-effects factorial ANOVA: Matrix approach 1

14:04 Friday, August 30, 2002

ALPHA

Significance level: 0.05

WANTPOW

Desired power: 0.8

F

Relative sample sizes: 0.25

0.25

0.25

0.25

Contrast matrix

C

0 0 -1 1

0 -1 1 0

-1 1 0 0

EFF

Effect matrix (in SD units): 0.25
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0.25

0.25

Checking input ...

Input appears to be okay.

EFFSIZE

Effect size = 0.078125

N

Required sample size is 144

We will presently see that the matrix approach is quite useful for larger designs and
more obscure hypotheses, where it might be quite difficult to locate or derive a special
purpose formula. But even in the one-way case, the martix approach has some advan-
tages. Suppose you wanted to play with relative sample sizes, in the case of four equally
spaced population means. As mentioned earlier, the optimal allocation is to split all the
observations equally between treatments One and Four. But what if one went part of
the way there – say, by giving half the sample to those two treatments? The program
matpow1b.sas is identical to matpow1.sas, except for the line specifying relative sample
sizes: beginverbatim f = 2,1,1,2; /* Relative sample sizes */ endverbatim Here is the
output.

Power analysis for fixed-effects factorial ANOVA: Matrix approach 1

14:44 Friday, August 30, 2002

ALPHA

Significance level: 0.05

WANTPOW

Desired power: 0.8

F

Relative sample sizes: 0.3333333

0.1666667

0.1666667

0.3333333

Contrast matrix

C

0 0 -1 1

0 -1 1 0

-1 1 0 0

EFF

Effect matrix (in SD units): 0.25

0.25

0.25

Checking input ...

Input appears to be okay.
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EFFSIZE

Effect size = 0.0989583

N

Required sample size is 115

Thus, with these unequal sample sizes, we can obtain the same power with 26 fewer
subjects, or 18%. Of course, this assumes you can guess which means will be highest and
lowest.

2.2.4 The General Case: One or more independent variables random

When there are more than two treatments, equal sample sizes do not always yield the
highest power. In general, the optimal allocation depends on the hypothesis being tested
and the nature of the true effect. For example, suppose you have a design with 18
treatment combinations, and the test in question is to compare µ1 with the average of
µ2 and µ3. Further, suppose that µ2 = µ3 �= µ1 (sigma2 can be anything); this is the
effect. The optimal allocation is to give half the sample to Treatment One, split the
other half any way at all between Treatments 2 and 3, and let n = 0 for the other 15
treatments. This is why observations are not usually allocated to treatments based on a
power analysis; it often advises you to put all your eggs in one basket. This seems silly,
but it’s rational given the (silly) assuption that we have certain knowledge of the true
parameter values.
Effect size is

∆2 =
(Cβ − h)′(C( 1

n
X′X)−1C′)−1(Cβ − h)
σ2

, (16)

Exercises?

1. Carry out the details necessary to derive (8) from (7)

2. Cell means coding for 2-sample

3. Effect coding for 2-sample

4. critical value is a function of n too – why do you still know that power is an increasing
function of n? Answer - critical value is decreeasing.

5.

6.

7.

8. Do the 6-group with SAS.

9.

10.

11.
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