
2.2 Introduction to SAS

SAS stands for “Statistical Analysis System.” Even though it runs on PCs and Macs as
well as on bigger computers, it is truly the last of the great old mainframe statistical
packages. The first beta release was in 1971, and the SAS Institute, Inc. was spun off
from North Carolina State University in 1976, the year after Bill Gates dropped out of
Harvard. This is a serious pedigree, and it has both advantages and disadvantages.

The advantages are that the number of statistical procedures SAS can do is truly
staggering, and the most commonly used ones have been tested so many times by so
many people that their correctness and numerical efficiency is beyond any question. For
the purposes of this class, there are no bugs. The disadvantages of SAS are all related
to the fact that it was designed to run in a batch-oriented mainframe environment. So,
for example, the SAS Institute has tried hard to make SAS an “interactive” program,
but has not really worked. It’s as if someone painted an eighteen-wheel transport truck
yellow, and called it a school bus. Yes, you can take the children to school in that thing,
but would you want to?

2.2.1 The Four Main File Types

A typical SAS job will involve four main types of file.

• The Raw Data File: A file consisting of rows and columns of numbers; or maybe
some of the columns have letters (character data) instead of numbers. The rows
represent observations and the columns represent variables, as described at the
beginning of Section 1.1. In the first example we will consider below, the raw data
file is called drp.dat.

• The Program File: This is also sometimes called a “command file,” because it’s
usually not much of a program. It consists of commands that the SAS software tries
to follow. You create this file with a text editor like pico or emacs. The command
file contains a reference to the raw data file (in the infile statement), so SAS knows
where to find the data. In the first example we will consider below, the command
file is called reading.sas. SAS expects program files to have the extension .sas,
and you should always follow this convention.

• The Log File: This file is produced by every SAS run, whether it is successful of
unsuccessful. It contains a listing of the command file, as well any error messages or
warnings. The name of the log file is automatically generated by SAS; it combines
the first part of the command file’s name with the extension .sas. So for exam-
ple, when SAS executes the commands in reading.sas, it writes a log file named
reading.log.

• The List File: The list file contains the output of the statistical procedures re-
quested by the command file. The list file has the extension .lst— so, for example,
running SAS on the command file reading.sas will produce reading.lst as well
as reading.log. A successful SAS run will almost always produce a list file. The
absence of a list file indicates that there was at least one fatal error. The presence
of a list file does not mean there were no errors; it just means that SAS was able to

21

do some of what you asked it to do. Even if there are errors, the list file will usually
not contain any error messages; they will be in the log file.

2.2.2 Running SAS from the Command Line

There are several ways to run SAS. We will run SAS from the unix command line. In my
view, this way is simplest and best.

If, by accident or on purpose, you type SAS without a filename, then SAS assumes you
want to initiate an interactive session, and it tries to start the SAS Display Manager. If
you are logged in through an ordinary telnet or ssh session, SAS terminates with an error:
ERROR: Cannot open X display. Check display name/server access authorization. SAS
assumes you are using the unix X-window graphical interface, so it will not work if your
computer is emulating a (semi) dumb terminal. If you are in an X-window session, after
a while several windows will open up. The only suggestion I have is this: Make sure the
SAS Program Editor window is selected. From the File menu, choose Exit. Whew.

If you choose to ignore this advice and actually try to use the Display Manager, you
are on your own. You will have my sympathy, but not my help. The joke about painting
the transport truck yellow applies, and the joke is on you.

The following illustrates a simple SAS run from the command line. Initially, there are
only two files in the (sub)directory — reading.sas (the program file) and drp.dat (the
raw data file). The command sas reading produces two additional files — reading.log

and reading.lst. In this and other examples, the unix prompt is tuzo.erin (the name
of the unix machine used to produce the examples), followed by a > sign.

tuzo.erin > ls

drp.dat reading.sas

tuzo.erin > sas reading

tuzo.erin > ls

drp.dat reading.log reading.lst reading.sas

2.2.3 Structure of the Program File

A SAS program file is composed of units called data steps and proc steps. The typical
SAS program has one data step and at least one proc step, though other structures are
possible.

• Most SAS commands belong either in data step or in a proc step;they will generate
errors if they are used in the wrong kind of step.

• Some statements, like the title and options commands, exist outside of the data
and proc steps, but there are relatively few of these.

The Data Step The data step takes care of data acquisition and modification. It
almost always includes a reference to the raw data file, telling SAS where to look for the
data. It specifies variable names and labels, and provides instructions about how to read
the data; for example, the data might be read from fixed column locations. Variables
from the raw data file can be modified, and new variables can be created.

22

Each data step creates a SAS data set, a file consisting of the data (after modifica-
tions and additions), labels, and so on. Statistical procedures operate on SAS data sets,
so you must create a SAS data set before you can start computing any statistics.

A SAS data set is written in a binary format that is very convenient for SAS to
process, but is not readable by humans. In the old days, SAS data sets were always
written to temporary scratch files on the computer’s hard drive; these days, they may be
maintained in RAM if they are small enough. In any case, the default is that a SAS data
set disappears after the job has run. If the data step is executed again in a later run, the
SAS data set is re-created.

Actually, it is possible to save a SAS data set on disk for later use. We won’t do this
much (there will be just one example), but it makes sense when the amount of processing
in a data step is large relative to the speed of the computer. As an extreme example, one
of my colleagues uses SAS to analyze data from Ontario hospital admissions; the data
files have millions of cases. Typically, it takes around 20 hours of CPU time on a very
strong unix machine just to read the data and create a SAS data set. The resulting file,
hundreds of gigabytes in size, is saved to disk, and then it takes just a few minutes to
carry out each analysis. You wouldn’t want to try this on a PC.

To repeat, SAS data steps and SAS data sets sound similar, but they are distinct
concepts. A SAS data step is part of a SAS program; it generates a SAS data set, which
is a file – usually a temporary file.

SAS data sets are not always created by SAS data steps. Some statistical procedures
can create SAS data sets, too. For example, proc univariate can take an ordinary SAS
data set as input, and produce an output data set that has all the original variables,
and also some of the variables converted to z-scores (by subtracting off the mean and
dividing by the standard deviation). Proc reg (the main multiple regression procedure)
can produce a SAS data set containing residuals for plotting and use in further analysis;
there are many other examples.

The Proc Step “Proc” is short for procedure. Most procedures are statistical proce-
dures; the main exception is proc format, which is used to provide labels for the values
of categorical independent variables. The proc step is where you specify a statistical pro-
cedure that you want to carry out. A statistical procedures in the proc step will take a
SAS data sets as input, and write the results (summary statistics, values of test statistics,
p-values, and so on) to the list file. The typical SAS program includes one data step and
several proc steps, because it is common to produce a variety of data displays, descriptive
statistics and significance tests in a single run.

2.2.4 A First Example: reading.sas

Earlier, we ran SAS on the file reading.sas, producing reading.log and reading.lst.
Now we will look at reading.sas in some detail. This program is very simple; it has
just one data step and one proc step. More details will be given later, but it’s based on a
study in which one group of grade school students received a special reading programme,
and a control group did not. After a couple of months, all students were given a reading
test. We’re just going to do an independent groups t-test, but first take a look at the raw
data file. You’d do this with the unix more command.

23

Actually, it’s so obvious that you should look at your data that nobody ever says it.
But experienced data analysts always do it — or else they assume everything is okay and
get a bitter lesson in something they already knew. It’s so important that it gets the
formal status of a data analysis hint.

Data Analysis Hint 1 Always look at your raw data file. It the data file is big, do it
anyway. At least page through it a screen at a time, looking for anything strange. Check
the values of all the variables for a few cases. Do they make sense? If you have obtained
the data file from somewhere, along with a description of what’s in it, never believe that
the description you have been given is completely accurate.

Anyway, here is the file drp.dat, with the middle cut out to save space.

Treatment 24
Treatment 43
Treatment 58

...
...

Control 55
Control 28
Control 48

...
...

Now we can look at reading.sas.

/******************* reading.sas **********************

* Simple SAS job to illustrate a two-sample t-test *

***/

options linesize=79 noovp formdlim=’_’;

title ’More & McCabe (1993) textbook t-test Example 7.8’;

data reading;

infile ’drp.dat’;

input group $ score;

label group = ’Get Directed Reading Programme?’

score = ’Degree of Reading Power Test Score’;

proc ttest;

class group;

var score;

Here are some detailed comments about reading.sas.

• The first three lines are a comment. Anything between a /* and */ is a comment,
and will be listed on the log file but otherwise ignored by SAS. Comments can
appear anywhere in a program. You are not required to use comments, but it’s a
good idea.

24

The most common error associated with comments is to forget to end them with
*/. In the case of reading.sas, leaving off the */ (or typing
by mistake) would cause the whole program to be treated as a comment. It would
generate no errors, and no output — because as far as SAS would be concerned,
you never requested any. A longer program would eventually exceed the default
length of a comment (it’s some large number of characters) and SAS would end the
“comment” for you. At exactly that point (probably in the middle of a command)
SAS would begin parsing the program. Almost certainly, the first thing it examined
would be a fragment of a legal command, and this would cause an error. The log
file would say that the command caused an error, and not much else. It would be
very confusing, because probably the command would be okay, and there would be
no indication that SAS was only looking at part of it.

• The next two lines (the options statement and the title statement) exist outside
the proc step and the data step. This is fairly rare.

• All SAS statements end with a semi-colon (;). SAS statements can extend for
several physical lines in the program file (for example, see the label statement).
Spacing, indentation, breaking up s statement into several lines of text – these are
all for the convenience of the human reader, and are not part of the SAS syntax.

• The most common error in SAS programming is to forget the semi-colon. When
this happens, SAS tries to interpret the following statement as part of the one you
tried to end. This often causes not one error, but a cascading sequence of errors.
The rule is, if you have an error and you do not immediately understand what it is,
look for a missing semi-colon. It will probably be before the portion of the program
that (according to SAS) caused the first error.

• Cascading errors are not caused just by the dreaded missing semi-colon. They are
common in SAS; for example, a runaway comment statement can easily cause a chain
reaction of errors (if the program is long enough for it to cause any error messages
at all). If you have a lot of errors in your log file, fix the first one and don’t waste
time trying to figure out the others. Some or all of them may well disappear.

• options linesize=79 noovp formdlim=’_’;

These options are highly recommended. The linesize=79 option is so highly rec-
ommended it’s almost obligatory. It causes SAS to write the output 79 columns
across, so it can be read on an ordinary terminal screen that’s 80 characters across.
You specify an output width of 79 characters rather than 80, because SAS uses one
column for printer control characters, like page ejects (form feeds).

If you do not specify options linesize=79;, SAS will use its default of 132 char-
acters across, the width of sheet of paper from an obsolete line printer you probably
have never seen. Why would the SAS Institute hang on to this default, when
changing it to match ordinary letter paper would be so easy? It probably tells
you something about the computing environments of some of SAS’s large corporate
clients.

25

• The noovp option makes the log files more readable if you have errors. When SAS
finds an error in your program, it tries to underline the word that caused the error.
It does this by going back and overprinting the offending word with a series of
“underscores” (characters). On many printers this works, but when you try to
look at the log file on a terminal screen (one that is not controlled by the SAS
Display Manager), what often appears is a mess. The noovp option specifies no

overprinting. It causes the “underlining” to appear on a separate line under the
program line with the error. If you’re running SAS from the unix command line
and looking at your log files with the more command (or the less command or the
cat commmand), you will probably find the noovp option to be helpful.

• The formdlim=’_’ option specifies a “form delimiter” to replace most form feeds
(new physical pages) in the list file. This can save a lot of paper (and page printing
charges). You can use any string you want for a form delimiter. The underscore
(the one specified here) causes a solid line to be printed instead of going to a new
sheet of paper.

• title This is optional, but recommended. The material between the single quotes
will appear at the top of each page. This can be a lifesaver when you are searching
through a stack of old printouts for something you did a year or two ago.

• data reading; This begins the data step, specifying the name of the SAS data set
that is being created.

• infile Specifies the name of the raw data file. The file name, enclosed in single
quotes, can be the full unix path to the file, like /dos/brunner/public/senic.raw.
If you just give the name of the raw data file, as in this example, SAS assumes that
the file is in the same directory as the command file.

• input Gives the names of the variables.

– A character variable (the values of group are “Treatment’ and “Control”) must
be followed by a dollar sign.

– Variable names must be eight characters or less, and should begin with a letter.
They will be used to request statistical procedures in the proc step. They
should be meaningful (related to what the variable is), and easy to remember.

– This is almost the simplest form of the input statement. It can be very pow-
erful; for example, you can read data from different locations and in different
orders, depending on the value of a variable you’ve just read, and so on. It can
get complicated, but if the data file has a simple structure, the input statement
can be simple too.

• label Provide descriptive labels for the variables; these will be used to label the
output, usually in very nice way. Labels can be quite useful, especially when you’re
trying to recover what you did a while ago. Notice how this statement extends over
two physical lines.

• proc ttest; Now the proc step begins. This program has only one data step and
one proc step. We are requesting a two-sample t-test.

26

• class Specifies the independent variable.

• var Specifies the dependent variable(s). You can give a list of dependent variables.
A separate univariate test (actually, as you will see, collection of tests is performed
for each dependent variable.

reading.log Log files are not very interesting when everything is okay, but here is an
example anyway. Notice that in addition to a variety of technical information (where the
files are, how long each step took, and so on), it contains a listing of the SAS program —
in this case, reading.sas. If there were syntax errors in the program, this is where the
error messages would appear.

tuzo.erin > cat reading.log

1 The SAS System 11:08 Friday, January 2,

NOTE: Copyright (c) 1989-1996 by SAS Institute Inc., Cary, NC, USA.

NOTE: SAS (r) Proprietary Software Release 6.12 TS020

Licensed to UNIVERSITY OF TORONTO/COMPUTING & COMMUNICATIONS, Site 0008987001.

This message is contained in the SAS news file, and is presented upon

initialization. Edit the files "news" in the "misc/base" directory to

display site-specific news and information in the program log.

The command line option "-nonews" will prevent this display.

NOTE: AUTOEXEC processing beginning; file is /local/sas612/autoexec.sas.

NOTE: SAS initialization used:

real time 0.780 seconds

cpu time 0.152 seconds

NOTE: AUTOEXEC processing completed.

1 /******************* reading.sas **********************

2 * Simple SAS job to illustrate a two-sample t-test *

3 ***/

4

5 options linesize=79 noovp formdlim=’_’;

6 title ’More & McCabe (1993) textbook t-test Example 7.8’;

7 data reading;

8 infile ’drp.dat’;

9 input group $ score;

10 label group = ’Get Directed Reading Programme?’

11 score = ’Degree of Reading Power Test Score’;

NOTE: The infile ’drp.dat’ is:

File Name=/res/jbrunner/442s04/notesSAS/drp.dat,

Owner Name=jbrunner,Group Name=research,

Access Permission=rw-------,

File Size (bytes)=660

NOTE: 44 records were read from the infile ’drp.dat’.

The minimum record length was 14.

The maximum record length was 14.

NOTE: The data set WORK.READING has 44 observations and 2 variables.

NOTE: DATA statement used:

real time 0.190 seconds

cpu time 0.051 seconds

12 proc ttest;

27

13 class group;

14 var score;

NOTE: The PROCEDURE TTEST printed page 1.

NOTE: PROCEDURE TTEST used:

real time 0.030 seconds

cpu time 0.009 seconds

2 The SAS System 11:08 Friday, January 2, 2004

NOTE: The SAS System used:

real time 1.120 seconds

cpu time 0.233 seconds

NOTE: SAS Institute Inc., SAS Campus Drive, Cary, NC USA 27513-2414

reading.lst Here is the list file. Notice that the title specified in the title statement
appears at the top, along with the time and date the program was executed. Then we
get means and standard deviations, and several statistical tests — including the one we
wanted. We get other stuff too, whether we want it or not. This is typical of SAS, and
most other mainstream statistical packages as well. The default output from any given
statistical procedures will contain more information than you wanted, and probably some
stuff you don’t understand at all. There are usually numerous options that can add more
information, but almost never options to reduce the default output. So, you just learn
what to ignore. It is helpful, but not essential,to have at least a superficial understanding
of everything in the default output from procedures you use a lot.

More & McCabe (1993) textbook t-test Example 7.8 1

11:08 Friday, January 2, 2004

TTEST PROCEDURE

Variable: SCORE Degree of Reading Power Test Score

GROUP N Mean Std Dev Std Error

Control 23 41.52173913 17.14873323 3.57575806

Treatmen 21 51.47619048 11.00735685 2.40200219

Variances T DF Prob>|T|

Unequal -2.3109 37.9 0.0264

Equal -2.2666 42.0 0.0286

For H0: Variances are equal, F’ = 2.43 DF = (22,20) Prob>F’ = 0.0507

Now here are some comments about reading.lst.

• Variable: SCORE This tells you what the dependent variable is – particularly
useful if you have more than one. Notice the nice use of the variable label that was
supplied in the label statement.

• GROUP The independent variable. Underneath are the values of the independent
variable. We also have the sample size n for each group, and the group mean,
standard deviation, and also the standard error or the mean (s√

n
, the estimated

standard deviation of the sampling distribution of the sample mean).

28

• Well actually, if you look carefully, you see that we do not quite get the val-
ues of the independent variable under GROUP. The values of the (alphanumeric,
or character-valued) variable group are Control and Treatment, but the printout
says “Treatmen.” This is not a printing error; it is a subtle error in the reading of
the data. The default length of an alphanumeric data value is 8 characters, but
“Treatment” has 9 characters. So SAS just read the first eight. No error message
was generated and no harm was done in this case, but in other circumstances this
error can turn a data file into a giant pile of trash, without warning. Later we will
see how to override the default and read longer strings if necessary.

• Next we get a table whose first column is entitled “Variances.” This gives t statistics
for testing equality of means, which was what we are interested in. The traditional
t-test assumes equal variances, and it is given in the column entitled “Equal.”

– The value of the test statistic is -2.2666.

– The degrees of freedom n1 + n2 − 2 is given in the DF column.

– The column Prob>|T| gives the two-tailed (two-sided) p-value. It is less than
the traditional value of 0.05, so the results are statistically significant.

Sample Question 2.2.1 What do we conclude from this study? Say something about
reading, using non-technical language.

Answer to Sample Question 2.2.1 Students who received the Directed Reading Pro-
gram got higher average reading scores than students in the control condition.

It’s worth emphasizing here that the main objective of doing a statistical analysis is to
draw conclusions about the data — or to refrain from drawing such conclusions, for good
reasons. The question “What do we conclude from this study?” will always be asked. The
right answer will always be either “Nothing; the results were not statistically significant,”
or else it will be something about reading, or fish, or potatoes, or AIDS, or whatever is
being studied. Many students, even when they have been warned, respond with a barrage
of statistical terminology. They go on and on about the null hypothesis and Type I error,
and usually say nothing that would tell a reasonable person what actually happened in
the study. In the working world, a memo filled with such garbage could get you fired.
Here, it will get you a zero for the question, even if the technical details you give are
correct.

Remember, the purpose of writing up a statistical analysis is not to sound impressive
and technical, but to impart information. To say things in a simple way is a virtue. It
shows you understand what is going on. Now back to the printout.

• The row entitled “Unequal” gives a sort of t-test that does not assume equal vari-
ances. Well, it’s not really a t-test, because the test statistic does not really have a
t distribution, even when the data are exactly normal. But, the (very unpleasant)
distribution of the test statistic is well approximated by a t distribution with the
right degrees of freedom — not n1 + n2 − 2, but something messy that depends on
the data. See the odd fractional degrees of freedom? See [2] for details. In any case,
it does not matter much in this case, because the p-value is almost the same as the

29

p-value from the traditional test. They lead to the same conclusions, and there is
no problem. What should you do when they disagree? I’d go with the test that
makes fewer assumptions.

• Next we see For H0: Variances are equal and an F -test. This is the traditional
test for whether the variances of two groups are equal, and it’s almost significant.
This test is provided so people can test for differences between variances; if it is
significantly different they can use the unequal variance t-test, and otherwise they
can use the traditional test. This seems reasonable, except for the following.

Both the two-sample t-test and the F -test for equality of variances assume that
the data are normally distributed. However, the normality assumption does not
matter much for the t-test when the sample sizes are large, while for the variance
test it matters a lot, regardless of how much data you have. When the data are
non-normal, the test for variances will be significant more than 5% of the time even
when the population variances are equal. If you have equal population variances
and a large sample of non-normal data, the F -test for variances could easily be
significant, leading you to worry unnecessarily about the validity of the t-test.

2.2.5 Background of the First Example

We don’t do statistical analysis in a vacuum. Before proceeding with more computing
details, let’s find out more about the reading data. This first example is from an introduc-
tory text. It’s Example 7.8 (p. 534) in More and McCabe’s excellent Introduction to the
practice of statistics [2]. We are interested in analyzing real data, not in doing textbook
exercises. But we will not turn up our noses just yet, because

Data Analysis Hint 2 When learning how to carry out a procedure using unfamiliar
statistical software, always do a textbook example first, and compare the output to the
material in the text. Regardless of what the manual might say, never assume you know
what the software is doing until you see an example.

More and McCabe do a great job of explaining the t-test with unequal variances, some-
thing SAS produces (along with usual t-test that assumes equal variances) without being
asked when you request a t-test. Besides, the data actually come from someone’s Ph.D.
thesis, so there is an element of realism. Here is Moore and McCabe’s description of the
study.

An educator believes that new directed reading activities in the classroom will
help elementary school pupils improve some aspects of their reading ability.
She arranges for a third grade class of 21 students to take part in these ac-
tivities. A control classroom of 23 third graders follows the same curriculum
without the activities. At the end of 8 weeks, all students are given a Degree
of Reading Power (DRP) test, which measures the aspects of reading ability
that the program is designed to improve.

Sample Question 2.2.2 What’s wrong with this study?

30

Answer to Sample Question 2.2.2 The independent variable was manipulated by the
experimenter, but it is not an experimental study. Even if classrooms were assigned ran-
domly to conditions (it is impossible to tell whether they were, from this brief description),
a large number of unobserved variables are potentially confounded with treatment. The
teacher in the classroom that received the treatment might be better than the teacher in
the control classroom, or possibly there was a particularly aggressive bully in the control
classroom, or maybe a mini-epidemic of some childhood disease hit the control classroom
—vdots. The list goes on. The point here is that there are many ways in which the
classroom experiences of children in the treatment group differ systematically from the
experiences of children in the control group.

Sample Question 2.2.3 How could the problem be fixed?

Answer to Sample Question 2.2.3 Assign classrooms at random to treatments. The
unit of analysis should be the classroom, not the individual student.

2.2.6 SAS Example Two: The statclass data

These data come from a statistics class taught many years ago. Students took eight
quizzes, turned in nine computer assignments, and also took a midterm and final exam.
The data file also includes gender and ethnic background; these last two variables are just
guesses by the professor, and there is no way to tell how accurate they were. The data
file looks like this. There are 21 columns and 62 rows of data; columns not aligned.

tuzo.erin > more statclass.dat

1 2 9 1 7 8 4 3 5 2 6 10 10 10 5 0 0 0 0 55 43

0 2 10 10 5 9 10 8 6 8 10 10 8 9 9 9 9 10 10 66 79

1 2 10 10 5 10 10 10 9 8 10 10 10 10 10 10 9 10 10 94 67

1 2 10 10 8 9 10 7 10 9 10 10 10 9 10 10 9 10 10 81 65

0 1 10 1 0 0 8 6 5 2 10 9 0 0 10 6 0 5 0 54 29

...

Here is the SAS program.

31

tuzo.erin > cat statmarks.sas

options linesize=79 pagesize=35;

title ’Grades from STA3000 at Roosevelt University: Fall, 1957’;

title2 ’Illustrate Elementary Tests’;

proc format; /* Used to label values of the categorical variables */

value sexfmt 0 = ’Male’ 1 = ’Female’;

value ethfmt 1 = ’Chinese’

2 = ’European’

3 = ’Other’ ;

data grades;

infile ’statclass.dat’;

input sex ethnic quiz1-quiz8 comp1-comp9 midterm final;

/* Drop lowest score for quiz & computer */

quizave = (sum(of quiz1-quiz8) - min(of quiz1-quiz8)) / 7;

compave = (sum(of comp1-comp9) - min(of comp1-comp9)) / 8;

label ethnic = ’Apparent ethnic background (ancestry)’

quizave = ’Quiz Average (drop lowest)’

compave = ’Computer Average (drop lowest)’;

mark = .3*quizave*10 + .1*compave*10 + .3*midterm + .3*final;

label mark = ’Final Mark’;

diff = quiz8-quiz1; /* To illustrate matched t-test */

label diff = ’Quiz 8 minus Quiz 1’;

format sex sexfmt.; /* Associates sex & ethnic */

format ethnic ethfmt.; /* with formats defined above */

proc freq;

tables sex ethnic;

proc means n mean std;

var quiz1 -- mark; /* single dash only works with numbered

lists, like quiz1-quiz8 */

proc ttest;

title ’Independent t-test’;

class sex;

var mark;

proc means n mean std t;

title ’Matched t-test: Quiz 1 versus 8’;

var quiz1 quiz8 diff;

proc glm;

title ’One-way anova’;

class ethnic;

model mark = ethnic;

means ethnic / Tukey Bon Scheffe;

proc freq;

title ’Chi-squared Test of Independence’;

tables sex*ethnic / chisq;

proc freq; /* Added after seeing warning from chisq test above */

32

title ’Chi-squared Test of Independence: Version 2’;

tables sex*ethnic / norow nopercent chisq expected;

proc corr;

title ’Correlation Matrix’;

var final midterm quizave compave;

proc plot;

title ’Scatterplot’;

plot final*midterm; /* Really should do all combinations */

proc reg;

title ’Simple regression’;

model final=midterm;

/* Predict final exam score from midterm, quiz & computer */

proc reg simple;

title ’Multiple Regression’;

model final = midterm quizave compave / ss1;

smalstuf: test quizave = 0, compave = 0;

Noteworthy features of this program include

• options linesize=79 pagesize=35; Good for 81
2
by 11 paper.

• title2 Subtitle

• proc format

• quiz1-quiz8

• Creating new variables with assignment statements

• sum(of quiz1-quiz8)

• diff = quiz8-quiz1

• format sex sexfmt.;

• quiz1 -- mark

• Title inside a procedure labels just that procedure

• proc freq For frequency distributions

• proc means To get means and standard deviations

• proc ttest We’ve seen

• proc means n mean std t A matched t-test is just a single-variable t-test carried
out on differences, testing whether the mean difference is equal to zero.

• proc glm

– class Tells SAS that ethnic is categorical.

33

– model Dependent variable(s) = independent variable(s)

– means ethnic / Tukey Bon Scheffe

• chisq option on proc freq

• chisq option on proc freq

• tables sex*ethnic / norow nopercent chisq expected; In version 2 of proc
freq

• proc corr

• proc plot; plot final*midterm; Scatterplot: First variable named goes on the
y axis.

• proc reg: model Dependent variable(s) = independent variable(s) again

• simple option on proc reg gives simple descriptive statistics. This last procedure
is an example of multiple regression, and we will return to it later once we have
more background.

statmarks.lst

Grades from STA3000 at Roosevelt University: Fall, 1957 1

Illustrate Elementary Tests

10:20 Friday, January 4, 2002

Cumulative Cumulative

SEX Frequency Percent Frequency Percent

--

Male 39 62.9 39 62.9

Female 23 37.1 62 100.0

Apparent ethnic background (ancestry)

Cumulative Cumulative

ETHNIC Frequency Percent Frequency Percent

--

Chinese 41 66.1 41 66.1

European 15 24.2 56 90.3

Other 6 9.7 62 100.0

^L Grades from STA3000 at Roosevelt University: Fall, 1957

2

Illustrate Elementary Tests

10:20 Friday, January 4, 2002

Variable Label N Mean Std Dev

--

QUIZ1 62 9.0967742 2.2739413

QUIZ2 62 5.8870968 3.2294995

QUIZ3 62 6.0483871 2.3707744

QUIZ4 62 7.7258065 2.1590022

QUIZ5 62 9.0645161 1.4471109

QUIZ6 62 7.1612903 1.9264641

QUIZ7 62 5.7903226 2.1204477

QUIZ8 62 6.3064516 2.3787909

COMP1 62 9.1451613 1.1430011

COMP2 62 8.8225806 1.7604414

COMP3 62 8.3387097 2.5020880

COMP4 62 7.8548387 3.2180168

COMP5 62 9.4354839 1.7237109

COMP6 62 7.8548387 2.4350364

34

COMP7 62 6.6451613 2.7526248

COMP8 62 8.8225806 1.6745363

COMP9 62 8.2419355 3.7050497

MIDTERM 62 70.1935484 13.6235557

FINAL 62 49.4677419 17.5141327

QUIZAVE Quiz Average (drop lowest) 62 7.6751152 1.1266917

COMPAVE Computer Average (drop lowest) 62 8.8346774 1.1204997

MARK Final Mark 62 67.7584101 11.0235746

--

^L Independent t-test

3

10:20 Friday, January 4, 2002

TTEST PROCEDURE

Variable: MARK Final Mark

SEX N Mean Std Dev Std Error Minimum Maximum

Male 39 67.62097070 10.11112521 1.61907581 43.61428571 89.93214286

Female 23 67.99145963 12.65945704 2.63967927 48.48214286 95.45714286

Variances T DF Prob>|T|

Unequal -0.1196 38.5 0.9054

Equal -0.1268 60.0 0.8995

For H0: Variances are equal, F’ = 1.57 DF = (22,38) Prob>F’ = 0.2190

^L Matched t-test: Quiz 1 versus 8

4

10:20 Friday, January 4, 2002

Variable Label N Mean Std Dev T

QUIZ1 62 9.0967742 2.2739413 31.4995252

QUIZ8 62 6.3064516 2.3787909 20.8749114

DIFF Quiz 8 minus Quiz 1 62 -2.7903226 3.1578011 -6.9576965

^L One-way anova

5

10:20 Friday, January 4, 2002

General Linear Models Procedure

Class Level Information

Class Levels Values

ETHNIC 3 Chinese European Other

Number of observations in data set = 62

^L One-way anova

6

10:20 Friday, January 4, 2002

General Linear Models Procedure

Dependent Variable: MARK Final Mark

Sum of Mean

Source DF Squares Square F Value Pr > F

Model 2 1478.9595320 739.4797660 7.35 0.0014

Error 59 5933.7115164 100.5713816

Corrected Total 61 7412.6710484

R-Square C.V. Root MSE MARK Mean

0.199518 14.80042 10.028528 67.758410

35

Source DF Type I SS Mean Square F Value Pr > F

ETHNIC 2 1478.9595320 739.4797660 7.35 0.0014

Source DF Type III SS Mean Square F Value Pr > F

ETHNIC 2 1478.9595320 739.4797660 7.35 0.0014

^L One-way anova

7

10:20 Friday, January 4, 2002

General Linear Models Procedure

Tukey’s Studentized Range (HSD) Test for variable: MARK

NOTE: This test controls the type I experimentwise error rate.

Alpha= 0.05 Confidence= 0.95 df= 59 MSE= 100.5714

Critical Value of Studentized Range= 3.400

Comparisons significant at the 0.05 level are indicated by ’***’.

Simultaneous Simultaneous

Lower Difference Upper

ETHNIC Confidence Between Confidence

Comparison Limit Means Limit

European - Other -5.108 6.539 18.185

European - Chinese 4.252 11.528 18.803 ***

Other - European -18.185 -6.539 5.108

Other - Chinese -5.550 4.989 15.528

Chinese - European -18.803 -11.528 -4.252 ***

Chinese - Other -15.528 -4.989 5.550

^L One-way anova

8

10:20 Friday, January 4, 2002

General Linear Models Procedure

Bonferroni (Dunn) T tests for variable: MARK

NOTE: This test controls the type I experimentwise error rate but

generally has a higher type II error rate than Tukey’s for all

pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 59 MSE= 100.5714

Critical Value of T= 2.46415

Comparisons significant at the 0.05 level are indicated by ’***’.

36

Simultaneous Simultaneous

Lower Difference Upper

ETHNIC Confidence Between Confidence

Comparison Limit Means Limit

European - Other -5.398 6.539 18.476

European - Chinese 4.071 11.528 18.985 ***

Other - European -18.476 -6.539 5.398

Other - Chinese -5.813 4.989 15.790

Chinese - European -18.985 -11.528 -4.071 ***

Chinese - Other -15.790 -4.989 5.813

^L One-way anova

9

10:20 Friday, January 4, 2002

General Linear Models Procedure

Scheffe’s test for variable: MARK

NOTE: This test controls the type I experimentwise error rate but

generally has a higher type II error rate than Tukey’s for all

pairwise comparisons.

Alpha= 0.05 Confidence= 0.95 df= 59 MSE= 100.5714

Critical Value of F= 3.15312

Comparisons significant at the 0.05 level are indicated by ’***’.

Simultaneous Simultaneous

Lower Difference Upper

ETHNIC Confidence Between Confidence

Comparison Limit Means Limit

European - Other -5.626 6.539 18.704

European - Chinese 3.928 11.528 19.127 ***

Other - European -18.704 -6.539 5.626

Other - Chinese -6.019 4.989 15.997

Chinese - European -19.127 -11.528 -3.928 ***

Chinese - Other -15.997 -4.989 6.019

37

^L Chi-squared Test of Independence 1

0

10:20 Friday, January 4, 2002

TABLE OF SEX BY ETHNIC

SEX ETHNIC(Apparent ethnic background (ancestry))

Frequency|

Expected |

Col Pct |Chinese |European|Other | Total

---------+--------+--------+--------+

Male | 27 | 7 | 5 | 39

| 25.79 | 9.4355 | 3.7742 |

| 65.85 | 46.67 | 83.33 |

---------+--------+--------+--------+

Female | 14 | 8 | 1 | 23

| 15.21 | 5.5645 | 2.2258 |

| 34.15 | 53.33 | 16.67 |

---------+--------+--------+--------+

Total 41 15 6 62

Chi-squared Test of Independence 13

10:20 Friday, January 4, 2002

STATISTICS FOR TABLE OF SEX BY ETHNIC

Statistic DF Value Prob

--

Chi-Square 2 2.921 0.232

Likelihood Ratio Chi-Square 2 2.996 0.224

Mantel-Haenszel Chi-Square 1 0.000 0.995

Phi Coefficient 0.217

Contingency Coefficient 0.212

Cramer’s V 0.217

Sample Size = 62

WARNING: 33% of the cells have expected counts less

than 5. Chi-Square may not be a valid test.

Correlation Matrix 14

10:20 Friday, January 4, 2002

Correlation Analysis

4 ’VAR’ Variables: FINAL MIDTERM QUIZAVE COMPAVE

Simple Statistics

Variable N Mean Std Dev Sum

FINAL 62 49.467742 17.514133 3067.000000

MIDTERM 62 70.193548 13.623556 4352.000000

QUIZAVE 62 7.675115 1.126692 475.857143

COMPAVE 62 8.834677 1.120500 547.750000

Simple Statistics

Variable Minimum Maximum Label

FINAL 15.000000 89.000000

MIDTERM 44.000000 103.000000

QUIZAVE 4.571429 9.714286 Quiz Average (drop lowest)

38

COMPAVE 5.000000 10.000000 Computer Average (drop lowest)

Correlation Matrix 15

10:20 Friday, January 4, 2002

Correlation Analysis

Pearson Correlation Coefficients / Prob > |R| under Ho: Rho=0 / N = 62

FINAL MIDTERM QUIZAVE COMPAVE

FINAL 1.00000 0.51078 0.47127 0.14434

0.0 0.0001 0.0001 0.2630

MIDTERM 0.51078 1.00000 0.59294 0.41277

0.0001 0.0 0.0001 0.0009

QUIZAVE 0.47127 0.59294 1.00000 0.52649

Quiz Average (drop lowest) 0.0001 0.0001 0.0 0.0001

COMPAVE 0.14434 0.41277 0.52649 1.00000

Computer Average (drop lowest) 0.2630 0.0009 0.0001 0.0

39

Scatterplot 16

10:20 Friday, January 4, 2002

Plot of FINAL*MIDTERM. Legend: A = 1 obs, B = 2 obs, etc.

FINAL |

|

100 +

|

| A

| A

80 + A A A

|

| A A A A

| A A A A A AA

60 + A AA

| A A A AA B A A

| A A A AA A A

| AA A

40 + A A A A A A C A

| A

| A A AA A A

| A AA A

20 + B

| A

|

|

0 +

|

-+---------+---------+---------+---------+---------+---------+---------+-

40 50 60 70 80 90 100 110

MIDTERM

Simple regression 17

10:20 Friday, January 4, 2002

Model: MODEL1

Dependent Variable: FINAL

Analysis of Variance

Sum of Mean

Source DF Squares Square F Value Prob>F

Model 1 4881.79529 4881.79529 21.180 0.0001

Error 60 13829.64019 230.49400

C Total 61 18711.43548

Root MSE 15.18203 R-square 0.2609

Dep Mean 49.46774 Adj R-sq 0.2486

C.V. 30.69077

Parameter Estimates

Parameter Standard T for H0:

Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 3.375101 10.19938324 0.331 0.7419

MIDTERM 1 0.656651 0.14268372 4.602 0.0001

Multiple regression output was deleted.

40

2.2.7 SAS Example Two: The SENIC data

These data are from a disk that comes with Neter et al’s [3] Applied linear statistical
models. The acronym SENIC stands for “Study of Nosocomial Infection Control.” “Noso-
comial” means acquired in hospital. Sometimes, patients go to hospital with a broken leg
or something, and catch a severe respiratory infection, presumably from other patients.
The observations here are hospitals, and the dependent variable is infrisk, the proba-
bility of catching an infection while in hospital (multiplied by 100). The other variables
are explained fairly well by the labels statement.

First we will look at the file senic0.sas. This is a very basic program that just reads
the data and does frequency distributions of everything (even identification number; you
don’t want to print this!). The idea is that you start out this way, checking for data
errors, and then gradually build up the program, adding labels, printing formats and new
variables a little bit at a time. This makes it easier to catch your errors.

/* senic0.sas */

options linesize = 79;

data simple;

infile ’senic.dat’;

input id stay age infrisk culratio xratio nbeds medschl

region census nurses service;

proc freq;

tables _all_;

Now suppose we discovered that the file has some weird missing value codes. The next
version of the program might look like this.

/* senic0.1.sas */

options linesize = 79;

data simple;

infile ’senic.dat’;

input id stay age infrisk culratio xratio nbeds medschl

region census nurses service;

/*** sas doesn’t like numeric missing value codes. a period . is

best for missing. however ***/

if stay eq 9999 then stay = . ;

if age eq 9999 then age = . ;

if xratio eq 9999 then xratio = . ;

if culratio eq 9999 then culratio = . ;

if infrisk = 999 then infrisk = . ;

if nbeds = 9 then nbeds = . ;

if medschl = 9 then medschl = . ;

if region = 9 then region = . ;

if census = 9 then census = . ;

if service = 9 then service = . ;

41

if nurses eq (0 or .999) then nurses = . ;

proc freq;

tables _all_;

The process continues. On the way, we switch to a version of the data file that has the
data lined up in fixed columns, with blanks for missing values (a common situation). We
wind up with a program called senicread.sas. Notice that is consists of just a proc

format and a data step. There are no statistical procedures, except a proc freq that is
commented out. This file will be read by programs that invoke statistical procedures, as
you will see.

42

/******* senicread.sas Just reads and labels data ***********/

title ’SENIC data’;

options linesize=79;

proc format; /* value labels used in data step below */

value yesnofmt 1 = ’Yes’ 2 = ’No’ ;

value regfmt 1 = ’Northeast’

2 = ’North Central’

3 = ’South’

4 = ’West’ ;

value acatfmt 1 = ’53 & under’ 2 = ’Over 53’;

data senic;

infile ’senic.raw’ missover ;

/* in senic.raw, missing=blank */

/* missover causes all blanks to be missing,

even at the end of a line. */

input

#1 id 1-5

stay 7-11

age 13-16

infrisk 18-20

culratio 22-25

xratio 27-31

nbeds 33-35

medschl 37

region 39

census 41-43

nurses 45-47

service 49-52 ;

label id = ’Hospital identification number’

stay = ’Av length of hospital stay, in days’

age = ’Average patient age’

infrisk = ’Prob of acquiring infection in hospital’

culratio = ’# cultures / # no hosp acq infect’

xratio = ’# x-rays / # no signs of pneumonia’

nbeds = ’Average # beds during study period’

medschl = ’Medical school affiliation’

region = ’Region of country (usa)’

census = ’Aver # patients in hospital per day’

nurses = ’Aver # nurses during study period’

service = ’% of 35 potential facil. & services’ ;

/* associating variables with their value labels */

format medschl yesnofmt.;

format region regfmt.;

/***** recodes, computes & ifs *****/

43

if 0<age<=53 then agecat=1;

else if age>53 then agecat=2;

label agecat = ’av patient age category’;

format agecat acatfmt.;

/* compute ad hoc index of hospital quality */

quality=(2*service+nurses+nbeds+10*culratio

+10*xratio-2*stay)/medschl;

if (region eq 3) then quality=quality-100;

label quality = ’jerry’’s bogus hospital quality index’;

/* Commented out

proc freq;

tables _all_;

*/

Here are some comments.

• Notice that we are reading the variables from specified columns. This allows data
to be packed into adjacent columns (some data files are like this), and also allows
missing data to be represented by blanks. But it means that the data must be
perfectly aligned into columns. Don’t assume this is true just because you were told
by someone who should know. Check!

• The missover option is highly recommended if missing values are represented by
blanks.

• if 0<age<=53 means “if 0 < age ≤ 53.’

• Age = 0 or negative would result in a missing value for agecat.

• a missing value for xratio (or any other variable in the formula) would result in a
missing value for quality.

• The double quotation mark in the middle of the label for quality is how you get
an apostrophe in a label.

• tables all in proc freq: The reserved name all means all the variables in
the data set.

Here is a program that pulls in senicread.sas with a %include statement, and then
does some statistical tests. Keeping the data definition in a separate file is often a good
strategy, because most data analysis projects involve a substantial number of statistical
procedures. It is common to have maybe twenty program files that carry out various
analyses. You could have the data step at the beginning of each program, but what

44

happens when (inevitably) you want to make a change in the data step and re-run your
analyses? You find yourself making the same change in twenty files. Probably you will
forget to change some of them, and the result is a big mess. If you keep your data definition
in just one place, you only have to edit it once, and a lot of problems are avoided.

/******************* basicsenic.sas ****************/

/* Basic stats on SENIC Data */

/***/

%include ’senicread.sas’; /* senicread.sas reads data, etc. */

proc univariate plot normal ; /* Plots and a test for normality */

title2 ’Describe Quantitative Variables’;

var stay -- nbeds census nurses service;

/* single dash only works with numbered lists, like item1-item50 */

proc freq;

title2 ’Frequency distributions of categorical variables’;

tables medschl region agecat;

proc chart;

title2 ’Vertical bar charts’;

vbar region medschl agecat /discrete ;

proc chart ;

title2 ’Pie chart’;

pie region/type=freq;

proc chart;

title2 ’Pseudo 3-d chart - just playing around’;

block region / sumvar=infrisk type=mean group=medschl discrete;

/* Now elementary tests */

proc freq; /* use freq to do crosstabs */

tables region*medschl / nocol nopercent expected chisq;

proc ttest;

class medschl;

var infrisk age ;

proc glm; /* one-way anova */

class region;

model infrisk=region;

means region/ snk scheffe;

proc plot;

plot infrisk * nurses

infrisk * nurses = medschl;

proc corr;

var stay -- nbeds census nurses service;

proc glm; /* simple regression with glm*/

45

model infrisk=nurses;

The list file from this job is long, so we will just look at the proc univariate output for
the dependent variable.

^L SENIC data

6

Describe Quantitative Variables

11:47 Friday, January 4, 2002

Univariate Procedure

Variable=INFRISK Prob of acquiring infection in hospital

Moments

N 113 Sum Wgts 113

Mean 4.354867 Sum 492.1

Std Dev 1.340908 Variance 1.798034

Skewness -0.11976 Kurtosis 0.182355

USS 2344.41 CSS 201.3798

CV 30.79102 Std Mean 0.126142

T:Mean=0 34.52353 Pr>|T| 0.0001

Num ^= 0 113 Num > 0 113

M(Sign) 56.5 Pr>=|M| 0.0001

Sgn Rank 3220.5 Pr>=|S| 0.0001

W:Normal 0.970897 Pr<W 0.1280

Quantiles(Def=5)

100% Max 7.8 99% 7.7

75% Q3 5.2 95% 6.4

50% Med 4.4 90% 5.8

25% Q1 3.7 10% 2.6

0% Min 1.3 5% 1.8

1% 1.3

Range 6.5

Q3-Q1 1.5

Mode 4.3

Extremes

Lowest Obs Highest Obs

1.3(93) 6.5(47)

1.3(40) 6.6(104)

1.4(107) 7.6(53)

1.6(2) 7.7(13)

1.7(85) 7.8(54)

^L SENIC data

7

Describe Quantitative Variables

11:47 Friday, January 4, 2002

Univariate Procedure

Variable=INFRISK Prob of acquiring infection in hospital

Stem Leaf # Boxplot

7 678 3 0

7

6 56 2 |

6 12334 5 |

5 5555666777889 13 |

5 0000112233344 13 +-----+

4 5555555666778888999 19 | |

4 0111122222333333344444 22 *--+--*

46

3 5577778999 10 +-----+

3 011244 6 |

2 5677899999 10 |

2 0013 4 |

1 678 3 |

1 334 3 0

----+----+----+----+--

Normal Probability Plot

7.75+ * * +*

| ++++

| +*+*

| +***

| ******

| ****

| *****

| ******+

| ***++

| +**+

| ****

| +***

| ++*+**

1.25+*++* *

+----+----+----+----+----+----+----+----+----+----+

-2 -1 0 +1 +2

2.2.8 SAS Reference Materials

This course is trying to teach you SAS by example, without full explanation, and certainly
without discussion of all the options. If you need more detail, there are several approaches
you can take. The most obvious is to consult the SAS manuals. The full set of manuals
runs to over a dozen volumes, and most of them look like telephone directories. For a
beginner, it is hard to know where to start. And even if you know where to look, the SAS
manuals can be hard to read, because they assume you already understand the statistical
procedures fairly thoroughly, and on a mathematical level. They are really written for
professional statisticians. The SAS Institute also publishes a variety of manual-like books
that are intended to be more instructional, most of them geared to specific topics (like
The SAS system for multiple regression and the SAS system for linear models). These
are a bit more readable, though it helps to have a real textbook on the topic to fill in the
gaps.

A better place to start is a wonderful book by Cody and Smith [1] entitled Applied
statistics and the SAS programming language. They do a really good job of presenting
and documenting the language of the data step, and and they also cover a set of statistical
procedures ranging from elementary to moderately advanced. If you had to own just one
SAS book, this would be it.

If you consult any SAS book or manual (Cody and Smith’s book included), you’ll need
to translate and filter out some details. First, you’re advised to ignore anything about
the SAS Display Manager. In this course, there are raw data file, program files, log files
and list files; that’s it.

Second, many of the examples you see in Cody and Smith’s book and elsewhere will
not have separate files for the raw data and the program. They include the raw data
in the program file in the data step, after a datalines or cards statement. Here is an
example from page 3 of [1].

data test;

47

input subject 1-2 gender $ 4 exam1 6-8 exam2 10-12 hwgrade $ 14;

datalines;

10 M 80 84 A

7 M 85 89 A

4 F 90 86 B

20 M 82 85 B

25 F 94 94 A

14 F 88 84 C

;

proc means data=test;

run;

Having the raw data and the SAS code together in one display is so attractive for
small datasets that most textbook writers cannot resist it. But think how unpleasant it
would be if you had 10,000 lines of data. The way we would do this example is to have
the data file (named, say, example1.dat) in a separate file. The data file would look like
this.

10 M 80 84 A

7 M 85 89 A

4 F 90 86 B

20 M 82 85 B

25 F 94 94 A

14 F 88 84 C

and the program file would look like this.

data test;

infile ’example1.dat’; /* Read data from example1.dat */

input subject 1-2 gender $ 4 Exam1 6-8 exam2 10-12 hwgrade $ 14;

proc means data=test;

Using this as an example, you should be able to translate any textbook example into
the program-file data-file format used in this course.

48

